基于条件风险价值CVaR的微网动态定价与调度策略附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着全球能源结构的转型和分布式能源技术的快速发展,微电网作为实现能源本地化、提高能源利用效率的关键技术,正日益受到广泛关注。微电网通常包含多种分布式电源(如光伏、风电)、储能系统和可控负荷,其运行受多种不确定性因素影响,例如可再生能源发电的波动性、负荷需求的随机性以及市场价格的动态变化等。这些不确定性使得微电网的优化运行和风险管理变得尤为复杂。传统的微电网调度和定价策略往往侧重于最小化运行成本或最大化收益,而对不确定性带来的潜在风险考虑不足。在极端情况下,如高负荷需求与低可再生能源发电同时发生,微电网可能面临供需失衡、甚至崩溃的风险。因此,研究能够有效应对不确定性并进行风险管理的微电网动态定价与调度策略具有重要的理论意义和实际价值。

条件风险价值(Conditional Value at Risk, CVaR),又称期望短缺(Expected Shortfall),是一种衡量投资组合在最坏情况下预期损失的风险度量。相较于传统的风险度量如风险价值(Value at Risk, VaR),CVaR能够更全面地反映尾部风险,即在损失超过某个阈值时,预期的平均损失。将CVaR引入微电网的动态定价与调度策略,可以帮助微电网运营商在追求经济效益的同时,有效控制由不确定性带来的尾部风险,提高系统的鲁棒性和稳定性。本文旨在深入探讨基于CVaR的微电网动态定价与调度策略,分析其理论基础、建模方法、解决思路以及潜在的应用前景。

理论基础:不确定性与CVaR

微电网运行中的不确定性主要来源于以下几个方面:

  • 可再生能源发电的波动性:

     光伏发电受天气影响显著,风力发电受风速影响,其发电量具有间歇性和随机性。

  • 负荷需求的随机性:

     用户用电行为具有不确定性,负荷需求随时间、天气、经济活动等因素变化。

  • 市场价格的波动性:

     接入大电网的微电网,其购电和售电价格可能随市场供需关系动态变化。

  • 设备故障的不确定性:

     发电机组、储能系统等设备的故障也可能对微电网运行造成影响。

这些不确定性因素如果得不到有效管理,可能导致微电网出现以下风险:

  • 供需失衡风险:

     当可再生能源发电不足且负荷需求过高时,可能导致电力短缺。

  • 经济损失风险:

     不准确的预测和不合理的调度可能导致高成本购电或低价售电,造成经济损失。

  • 弃风弃光风险:

     当可再生能源发电量超过负荷需求和储能能力时,可能导致弃风弃光。

  • 系统稳定性风险:

     严重的供需失衡可能威胁微电网的频率和电压稳定性。

风险管理是微电网优化运行的关键环节。传统的优化方法往往采用确定性模型,忽略了不确定性,或者采用简单的场景分析法,难以全面捕捉尾部风险。VaR作为一种风险度量,虽然能够给出损失超过某个阈值的概率,但无法衡量损失超过阈值后的平均损失。

1.建模方法:基于CVaR的微网动态定价与调度模型

基于CVaR的微网动态定价与调度模型通常是一个多目标优化问题,其目标是在满足系统运行约束的前提下,最小化预期运行成本并控制风险。一个典型的模型可以包括以下部分:

运行成本通常包括:

  • 购电成本:

     从大电网购电的成本。

  • 自发自用成本:

     可再生能源发电和分布式发电机组的运行成本。

  • 储能系统充放电成本:

     储能系统的维护和损耗成本。

  • 环境成本:

     某些发电机组可能产生的排放成本。

  • 负荷削减或转移成本:

     为应对供需失衡而采取的负荷管理措施的成本。

2. 运行约束:

微电网的运行约束包括:

  • 功率平衡约束:

     在每个调度时段,发电量、储能系统放电量与购电量之和等于负荷需求、储能系统充电量与售电量之和。

  • 可再生能源发电约束:

     可再生能源发电量受预测值和实际出力上限限制。

  • 分布式发电机组约束:

     发电机组的出力范围、爬坡率等限制。

  • 储能系统约束:

     储能系统的容量、充放电功率、充放电效率、荷电状态(SOC)上下限等限制。

  • 与大电网的功率交换约束:

     从大电网购电或向大电网售电的功率上限。

  • 负荷约束:

     负荷需求必须得到满足,或者在考虑负荷削减时,满足负荷优先级约束。

  • 微电网内部线路容量约束:

     考虑微电网内部电力传输的限制。

3. 不确定性建模:

不确定性通常通过随机场景或概率分布来建模。常用的方法包括:

  • 场景生成法:

     根据历史数据和预测信息生成多种可能的不确定性场景,每个场景对应一种可能的可再生能源出力和负荷需求组合。

  • 概率分布建模:

     将不确定性因素建模为具有特定概率分布的随机变量。

  • 鲁棒优化:

     在最坏情况下对不确定性进行优化,以保证系统的鲁棒性。

4. 动态定价策略:

动态定价是根据微电网的运行状态、不确定性以及用户需求弹性,实时调整电价的一种策略。基于CVaR的动态定价可以将风险因素纳入价格制定过程。例如,当预测到未来存在较高的供需失衡风险时,可以适当提高电价,以鼓励用户削减负荷或调整用电时间,从而降低风险。定价模型可以与调度模型耦合,形成一个闭环的控制系统。定价策略可以基于以下原则:

  • 成本加成定价:

     在运行成本的基础上加上一个风险溢价。

  • 弹性定价:

     根据用户对价格的响应程度制定差异化电价。

  • 基于市场价格的定价:

     结合外部大电网的市场价格进行定价。

解决思路:优化算法与实施框架

基于CVaR的微电网动态定价与调度模型通常是一个大规模的混合整数规划问题,需要采用高效的优化算法进行求解。常用的解决思路包括:

  • 场景优化:

     将基于场景的模型转化为一个大规模的线性规划或混合整数规划问题,利用现有的优化求解器(如CPLEX, Gurobi)进行求解。然而,当场景数量较大时,求解难度和计算时间会急剧增加。

  • 分解算法:

     对于大规模问题,可以采用分解算法,如Benders分解或列生成算法,将原问题分解为更易于求解的子问题,通过迭代求解子问题和主问题来逼近最优解。

  • 启发式算法与元启发式算法:

     对于计算复杂度较高的模型,可以采用遗传算法、粒子群优化、模拟退火等启发式或元启发式算法进行近似求解。

  • 机器学习与强化学习:

     利用机器学习算法对不确定性进行预测,或者采用强化学习方法学习最优的调度和定价策略,以应对动态变化的环境。

实施基于CVaR的微电网动态定价与调度策略需要建立一个完整的系统框架,包括:

  • 数据采集与预测模块:

     收集可再生能源出力、负荷需求、市场价格等实时数据,并进行短期和超短期预测。

  • 场景生成模块:

     根据预测结果和历史数据生成不确定性场景。

  • 优化调度模块:

     基于生成的场景和CVaR模型进行优化求解,生成最优的调度计划。

  • 动态定价模块:

     根据调度结果、系统状态和风险水平生成动态电价。

  • 用户交互模块:

     与用户进行信息交互,提供电价信息和用电建议。

  • 系统监控与控制模块:

     实时监控微电网运行状态,并执行调度和定价指令。

应用前景与挑战

基于CVaR的微电网动态定价与调度策略在提高微电网运行的经济性和鲁棒性方面具有广阔的应用前景,尤其适用于以下场景:

  • 高比例可再生能源接入的微电网:

     能够有效管理可再生能源发电的波动性带来的风险。

  • 对供电可靠性要求较高的微电网:

     通过控制尾部风险,降低极端情况下的供电中断概率。

  • 参与电力市场交易的微电网:

     能够更好地应对市场价格波动带来的风险,提高交易收益。

  • 具有柔性负荷的微电网:

     可以通过动态定价激励用户参与需求响应,降低系统运行风险。

然而,将CVaR应用于微电网动态定价与调度也面临一些挑战:

  • 不确定性场景的准确生成:

     场景数量的选择和场景概率的估计对模型求解精度和计算效率有重要影响。

  • 风险厌恶系数的确定:

     风险厌恶系数的选择是一个主观决策,需要根据微电网运营商的风险偏好进行调整。

  • 模型的计算复杂度:

     大规模场景下的优化问题求解难度较大,需要高效的算法和计算平台。

  • 动态定价对用户行为的影响:

     用户的价格弹性模型需要准确估计,以确保动态定价策略的有效性。

  • 实时性要求:

     动态定价和调度需要在短时间内完成决策,对算法的计算速度和系统的响应能力有较高要求。

结论

基于条件风险价值CVaR的微电网动态定价与调度策略为应对微电网运行中的不确定性提供了有效的风险管理工具。通过将CVaR引入优化模型,可以在追求经济效益的同时,有效控制尾部风险,提高微电网的鲁棒性和稳定性。虽然在建模、求解和实施方面仍面临一些挑战,但随着优化算法、机器学习技术和信息通信技术的发展,基于CVaR的微电网动态定价与调度策略将成为未来智能微电网运行管理的重要发展方向。未来的研究可以进一步探索更精细的不确定性建模方法、更高效的求解算法、基于强化学习的动态风险管理策略以及CVaR在多微电网协同运行中的应用,以期为构建更加可靠、经济和可持续的能源系统提供理论支持和技术保障。

⛳️ 运行结果

🔗 参考文献

[1] 李康平,张展耀,王飞,等.基于GAN场景模拟与条件风险价值的独立型微网容量随机优化配置模型[J].电网技术, 2019(5).

[2] 孙健,柯德平,徐箭,等.基于高精度热泵模型的电热协同独立微网设备优化配置[J].电力自动化设备, 2024(5).

[3] 李康平,张展耀,王飞,等.基于GAN场景模拟与条件风险价值的独立型微网容量随机优化配置模型[J].电网技术, 2019(5):9.DOI:CNKI:SUN:DWJS.0.2019-05-029.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值