- 博客(7388)
- 资源 (27)
- 收藏
- 关注
原创 基于BP神经网络的锂电池剩余寿命预测
在新能源技术蓬勃发展的当下,锂电池凭借其高能量密度、长循环寿命等优势,广泛应用于电动汽车、储能系统、便携式电子设备等领域。然而,锂电池在使用过程中,其性能会随着充放电循环次数的增加而逐渐衰退,直至无法满足使用要求。准确预测锂电池的剩余寿命(Remaining Useful Life,RUL),对于保障设备安全运行、优化维护策略、提高能源利用效率具有重要意义。BP(Back Propagation)神经网络作为一种经典的人工神经网络模型,因其强大的非线性拟合能力,成为锂电池剩余寿命预测的有效工具之一。
2025-05-13 15:33:31
138
原创 区间预测 | QRTCN时间卷积神经网络分位数回归时间序列区间预测模型(Matlab完整源码和数据)
在时间序列分析的广阔领域中,精准的预测对于各行业决策至关重要。传统的点预测只能给出单一数值,无法体现数据的不确定性,而区间预测能够提供一个取值范围,更贴合实际应用需求。QRTCN(Quantile Regression Temporal Convolutional Network,分位数回归时间卷积神经网络)模型,正是应对时间序列区间预测任务的强大工具,它将时间卷积神经网络(TCN)与分位数回归相结合,为区间预测带来了新的思路与方法。
2025-05-13 15:31:19
125
原创 聚划算!Transformer-BiLSTM、Transformer、BiLSTM三模型多变量回归预测
在数据驱动的时代,多变量回归预测广泛应用于经济分析、交通流量预测、能源消耗预估等众多领域。不同的机器学习模型在处理多变量回归任务时,展现出各异的性能。今天,我们就来聚焦 Transformer-BiLSTM、Transformer、BiLSTM 这三个模型,看看它们在多变量回归预测中会碰撞出怎样的火花,究竟谁更 “聚划算”!
2025-05-13 15:26:35
281
原创 区间预测 | QRBiTCN双向时间卷积神经网络分位数回归时间序列区间预测模型(Matlab完整源码和数据)
在时间序列分析领域,点预测只能给出单一数值,难以反映数据背后的不确定性,而区间预测能提供一个取值范围,更贴合实际应用需求。QRBiTCN(Quantile Regression Bidirectional Temporal Convolutional Network,分位数回归双向时间卷积神经网络)模型,正是解决时间序列区间预测问题的有力工具。接下来,我们就深入探索这个模型的奥秘。QRBiTCN 双向时间卷积神经网络分位数回归模型,凭借其独特的架构和原理,为时间序列区间预测提供了一种高效、精准的解决方案。
2025-05-13 15:22:57
234
原创 SVM支持向量机+SHAP特征选择和贡献度计算,Matlab代码实现
在机器学习的广阔天地里,模型的性能与特征的选取、理解紧密相连。SVM(支持向量机)作为经典的有监督学习算法,在分类和回归任务中表现出色;SHAP(SHapley Additive exPlanations)则是一种强大的模型解释工具,能够量化每个特征对模型输出的贡献。当 SVM 遇上 SHAP,会碰撞出怎样的火花呢?今天就带大家深入了解 SVM 支持向量机结合 SHAP 进行特征选择和贡献度计算的奇妙过程。一、SVM 与 SHAP 原理速览1.1 SVM 支持向量机原理。
2025-05-13 13:13:40
358
原创 人工蜂群算法ABC-CNN-LSTM-Attention、CNN-LSTM-Attention、ABC-CNN-LSTM、CNN-LSTM四模型多变量时序预测MATLAB
在当今数字化时代,多变量时序预测在众多领域都扮演着举足轻重的角色。以金融领域为例,投资者需要根据多个经济指标,如利率、通货膨胀率、股票价格指数等,来预测股票价格走势,从而做出明智的投资决策。准确的预测能够帮助投资者抓住投资机会,避免潜在的风险,实现资产的保值增值。在能源领域,电力公司需要预测电力负荷,以合理安排发电计划,确保电力供应的稳定和高效。这不仅关系到电力公司的运营成本和经济效益,也直接影响到社会的正常运转。
2025-05-13 13:10:58
298
原创 Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型多变量回归预测
在大数据时代,多变量回归预测广泛应用于金融分析、能源管理、交通流量预测等领域。多变量数据中各变量间存在复杂的时空依赖和非线性关系,如何从海量数据中精准提取特征并实现准确预测,成为研究热点。Transformer-GRU、Transformer、CNN-GRU、GRU、CNN 这五种模型各有特色,为多变量回归预测提供了不同思路,接下来我们将深入探讨它们的原理、性能与应用。一、多变量回归预测:挑战与需求多变量回归预测旨在基于多个自变量的历史数据,预测一个或多个因变量的数值。
2025-05-13 13:00:32
440
原创 深度学习工艺参数优化+酷炫相关性气泡图!CNN卷积神经网络+NSGAII多目标优化算法(Matlab完整源码)
一、工艺参数优化:挑战与机遇工艺参数优化旨在通过调整生产过程中的各类参数,如温度、压力、时间、原料配比等,实现产品质量提升、生产成本降低、生产效率提高等多个目标。然而,实际生产中的工艺参数优化面临诸多挑战:工艺系统通常具有高度非线性,参数之间相互关联、相互影响;优化目标往往是多个且相互冲突,例如提高生产效率可能会导致产品质量下降;此外,大规模的参数搜索空间也使得传统优化算法难以在可接受的时间内找到最优解。
2025-05-13 12:57:54
370
原创 回归预测 | Matlab实现DBO-LightGBM蜣螂算法优化轻量级梯度提升机多输入单输出回归预测
在机器学习应用日益广泛的今天,多输入单输出回归预测是解决众多实际问题的关键技术,如房价预测、销售额预估、环境指标测算等。然而,传统回归模型在处理高维、复杂的多输入数据时,常面临计算效率低、预测精度不足的困境。DBO-LightGBM 模型将蜣螂算法(DBO)与轻量级梯度提升机(LightGBM)相结合,为多输入单输出回归预测带来了新的突破方向。一、多输入单输出回归预测:挑战与需求多输入单输出回归预测旨在通过多个自变量特征,预测一个目标变量的数值。
2025-05-13 12:54:13
619
原创 CNN-SE-Attention-ITCN多特征输入回归预测(Matlab完整源码和数据)
在大数据与人工智能蓬勃发展的当下,多特征输入回归预测广泛应用于智能交通、医疗诊断、工业生产优化等领域。多特征数据往往包含丰富但复杂的信息,不同特征间的关联、重要性差异以及数据的高维性,都给精准预测带来挑战。CNN-SE-Attention-ITCN 模型整合卷积神经网络(CNN)、挤压激励网络(SE)、注意力机制(Attention)与改进型时间卷积网络(ITCN),为多特征输入回归预测提供了强大的技术支撑。一、多特征输入回归预测的挑战与需求多特征输入回归预测旨在通过多个自变量特征,预测目标变量的数值。
2025-05-13 12:52:35
248
原创 TCN-LSTM-Attention多变量时间序列预测(Matlab完整源码和数据)
在工业物联网、金融分析、气象监测等领域,多变量时间序列数据蕴含着丰富的信息,精准预测其未来趋势能为决策提供关键依据。然而,多变量时间序列中复杂的时间依赖、变量间的非线性关系以及数据噪声,使得预测任务极具挑战性。TCN-LSTM-Attention 模型将时间卷积网络(TCN)、长短期记忆网络(LSTM)与注意力机制深度融合,为攻克这些难题提供了全新思路。一、多变量时间序列预测的困境多变量时间序列由多个具有时间顺序的变量组成,各变量之间相互影响、相互制约。
2025-05-13 12:49:57
296
原创 Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型多变量回归预测
在数据驱动的时代,多变量回归预测广泛应用于金融市场分析、能源消耗预测、交通流量预估等领域。由于多变量数据蕴含复杂的时空依赖关系和非线性特征,单一模型往往难以精准捕捉,而 Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN 这五种模型各有优势,为多变量回归预测提供了不同的解题思路。接下来,我们将深入探究它们的原理、性能与应用。一、多变量回归预测:挑战与机遇并存多变量回归预测旨在基于多个自变量的历史数据,预测一个或多个因变量的未来趋势。
2025-05-13 12:46:22
279
原创 TCN-BiGRU时间卷积双向门控循环单元多变量时间序列预测(Matlab完整源码和数据)
在当今数字化时代,多变量时间序列数据广泛存在于金融市场、能源管理、交通流量等诸多领域。准确的多变量时间序列预测,不仅能帮助企业提前规划资源、规避风险,还能为政策制定提供有力依据。然而,多变量时间序列往往具有复杂的非线性关系、长距离依赖以及变量间的相互作用,传统的预测模型难以有效应对这些挑战。近年来,深度学习模型凭借强大的特征提取和模式识别能力,在时间序列预测领域崭露头角,其中,TCN-BiGRU(时间卷积双向门控循环单元)模型成为了多变量时间序列预测的一把 “金钥匙”。一、多变量时间序列预测的挑战。
2025-05-13 12:45:29
502
原创 Transformer四模型回归打包(内含NRBO-Transformer-GRU、Transformer-GRU、Transformer、GRU模型)
在当今数字化时代,时间序列预测作为一项关键技术,广泛应用于金融、气象、能源等诸多领域。在金融领域,准确预测股票价格走势,能帮助投资者抓住时机,获取丰厚收益;气象领域中,精准的天气预测,可为人们的日常出行和农业生产提供重要参考;能源领域里,对电力负荷的有效预测,有助于合理安排能源供应,避免能源浪费。传统的时间序列预测方法,如 ARIMA、指数平滑法等,在面对简单数据时表现尚可,但当遇到复杂的、非线性的时间序列数据时,就显得力不从心。随着深度学习技术的迅猛发展,为时间序列预测带来了新的曙光。
2025-05-13 12:44:12
466
原创 TCN-BiLSTM时间卷积双向长短期记忆神经网络多变量时间序列预测(Matlab完整源码和数据)
TCN(时间卷积网络)和 BiLSTM(双向长短期记忆网络)结合的模型在多变量时间序列预测中具有独特的优势,下面从模型的原理、构建步骤、优势以及应用案例等方面进行介绍::TCN 是一种专门处理时间序列数据的卷积神经网络。它通过因果卷积(确保当前时刻的输出仅依赖于过去的输入)和扩张卷积(可以以指数级扩大感受野,捕捉长距离依赖关系),能够有效提取时间序列中的局部特征和长期依赖信息。例如,在电力负荷时间序列中,TCN 可以识别出负荷数据在不同时间尺度上的变化模式。:BiLSTM 是长短期记忆网络(LSTM)的扩展
2025-05-13 12:37:16
417
原创 飞蛾扑火算法优化+Transformer四模型回归打包(内含MFO-Transformer-LSTM及单独模型)
飞蛾扑火算法(MFO)优化 Transformer 模型,再结合其他相关模型进行回归分析,能有效提升回归任务的性能。
2025-05-12 20:57:40
597
原创 TCN-BiGRU时间卷积双向门控循环单元多变量时间序列预测(Matlab完整源码和数据)
TCN(时间卷积网络)与 BiGRU(双向门控循环单元)的结合为多变量时间序列预测提供了一种强大的解决方案。这种组合模型能够同时捕捉序列的局部特征和双向时间依赖关系,特别适合处理具有复杂动态特性的多变量数据。
2025-05-12 20:52:43
499
原创 TCN-LSTM-Attention多变量时间序列预测(Matlab完整源码和数据)
变量时间序列预测提供了强大的解决方案。这种组合模型充分利用了三者的优势,既能捕捉序列的局部特征和长期依赖,又能自适应地关注重要信息。
2025-05-12 20:47:13
526
原创 聚划算!CNN-LSTM、CNN、LSTM三模型多变量回归预测
原理:CNN 主要由卷积层、池化层和全连接层组成。卷积层通过卷积核在多变量时间序列数据上滑动,提取局部特征;池化层用于降维,减少计算量;全连接层将提取的特征映射到输出空间。在多变量回归预测中,CNN 可以捕捉不同变量之间的空间结构信息,以及时间序列数据的局部模式。优点:能够自动提取数据的特征,对多变量数据的局部特征和空间关系有较好的捕捉能力;计算效率相对较高,适合处理大规模数据。缺点:对于时间序列数据的长期依赖关系处理能力有限,难以捕捉数据的长期趋势和上下文信息。
2025-05-12 18:44:32
535
原创 TCN-BiLSTM-Attention多变量时间序列预测(Matlab完整源码和数据)
TCN(时间卷积网络)、BiLSTM(双向长短期记忆网络)和 Attention(注意力机制)相结合的模型在多变量时间序列预测中展现出强大的能力,以下从模型各部分原理、组合方式、模型训练及应用优势等方面进行介绍::TCN 是一种专门处理时间序列数据的卷积神经网络。它通过因果卷积(确保当前时刻的输出仅依赖于过去的输入)和扩张卷积(增加网络对长序列的处理能力,捕捉更长时间范围的信息),能够有效地提取时间序列中的特征。在多变量时间序列预测中,TCN 可以同时处理多个变量的时间序列,挖掘变量之间的空间和时间依赖关系
2025-05-12 18:41:32
628
原创 ABC-CNN-BiLSTM-Attention、CNN-BiLSTM-Attentio四类对比模型
针对多变量时序预测任务,我将从模型架构、性能特点、应用场景等维度对这四类模型进行对比分析::人工蜂群算法 (Artificial Bee Colony) 优化模型超参数,如学习率、Dropout 率、注意力权重等:提取输入序列的局部特征和空间相关性:双向捕捉时序数据的长短期依赖关系:自适应分配不同时间步和特征的权重缺少 ABC 优化环节,直接使用固定超参数或网格搜索调优其他架构组件与 ABC 版本一致1. 全局优化能力强,避免局部最优 2. 自适应调整模型参数 3. 对复杂非线性关系拟合能力更强
2025-05-12 17:41:31
611
原创 回归预测 | Matlab实现RIME-CNN-GRU-Attention霜冰优化卷积门控循环单元注意力机制多变量回归预测
RIME(霜冰优化):假设 “霜冰优化” 是一种基于某种仿生或物理原理的优化算法,模拟自然界中类似霜冰形成和变化的过程,对模型的参数进行优化。其核心思想可能是通过不断调整参数,使模型在多变量回归预测任务中达到更好的性能,避免陷入局部最优解,提高模型的泛化能力和预测精度。CNN(卷积神经网络):CNN 主要由卷积层、池化层和全连接层组成。卷积层通过卷积核在多变量时间序列数据上滑动,提取数据的局部特征,能够捕捉数据在空间维度上的信息。
2025-05-12 17:35:09
516
原创 【锂电池SOH预测】PSO-BP锂电池健康状态预测,锂电池SOH预测(Matlab完整源码和数据)
SOH 定义:锂电池的健康状态(SOH)通常用实际容量与额定容量的比值来表示,反映了电池的老化程度。随着电池充放电循环次数的增加,其实际容量会逐渐衰减,SOH 值也会随之降低。准确预测 SOH 对于电池管理系统(BMS)的设计、电池的合理使用以及电动汽车的安全运行都具有重要意义。BP 神经网络:BP 神经网络是一种多层前馈神经网络,通过反向传播算法进行训练。在 SOH 预测中,BP 神经网络可以学习电池的历史充放电数据与 SOH 之间的非线性映射关系。
2025-05-12 17:31:56
634
原创 JCRQ1河马算法+消融实验!HO-CNN-LSTM-Attention系列四模型多变量时序预测
河马算法(这里以假设的 JCRQ1 河马算法为例)可能是模拟河马的某种行为(比如觅食、迁徙等行为)来搜索最优解。在多变量时序预测中,它可能用于优化模型的参数或结构。算法通过对河马行为的数学建模,设计相应的搜索策略,在解空间中寻找能够使多变量时序预测误差最小的参数组合或模型结构。
2025-05-12 17:24:13
341
原创 飞蛾扑火算法优化+Transformer四模型回归打包(内含MFO-Transformer-LSTM及单独模型)
飞蛾扑火算法模拟飞蛾围绕火焰飞行的行为,通过飞蛾与火焰(最优解)之间的相互作用来搜索最优解。在算法中,飞蛾根据火焰的位置更新自身位置,以逐渐接近最优解。算法的关键在于合理设置飞蛾位置更新的规则和火焰的动态变化,以实现高效的搜索过程。
2025-05-12 17:17:18
618
原创 多维时序 | MATLAB实现基于VMD-SSA-LSSVM、SSA-LSSVM、VMD-LSSVM、LSSVM的多变量时间序列预测对比
VMD-SSA-LSSVM、SSA - LSSVM、VMD - LSSVM 和 LSSVM 这四种模型在多变量时间序列预测中各有特点,以下是它们的对比::最小二乘支持向量机,是在支持向量机基础上,将传统 SVM 中的不等式约束转化为等式约束,把二次规划问题转化为线性方程组求解,从而降低计算复杂度,可通过寻找最优超平面实现对多变量时间序列的预测,能捕捉变量间关系。:在 LSSVM 基础上,先利用变分模态分解(VMD)将多变量时间序列分解为多个不同频率子序列,再分别用 LSSVM 对各子序列进行预测,最后将结果
2025-05-12 17:15:26
591
原创 时序预测 | 基于VMD-SSA-LSSVM+LSTM多变量时间序列预测模型(Matlab)
基于 VMD-SSA-LSSVM+LSTM 的多变量时间序列预测模型结合了变分模态分解(VMD)、麻雀搜索算法(SSA)、最小二乘支持向量机(LSSVM)和长短期记忆网络(LSTM)的优势,能够更有效地处理多变量时间序列数据,提高预测的准确性。
2025-05-12 17:12:34
322
原创 GA-Transformer遗传算法优化编码器多特征分类预测/故障诊断
Transformer 模型:Transformer 是一种基于注意力机制的深度学习模型,能够处理序列数据,捕捉数据中的长程依赖关系。在多特征分类预测和故障诊断中,Transformer 可以对输入的多特征数据进行特征提取和模式识别。例如,在设备故障诊断中,设备的各种运行参数(如温度、压力、振动等)作为多特征输入到 Transformer 中,Transformer 通过注意力机制关注不同特征之间的关系,提取关键特征进行分类预测。遗传算法。
2025-05-12 17:09:02
385
原创 Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型多变量回归预测
在多变量回归预测中,Transformer、GRU、CNN、Transformer-GRU 以及 CNN-GRU 这五种模型各自具有独特的特点和优势,下面将分别介绍它们的原理、在多变量回归预测中的应用以及性能比较::GRU 是循环神经网络(RNN)的一种变体,通过引入门控机制解决了传统 RNN 中的梯度消失和梯度爆炸问题。它包含更新门和重置门,更新门决定了前一时刻的信息保留程度,重置门控制了当前输入与前一时刻状态的结合方式。在多变量回归预测中,GRU 可以处理具有时间序列特征的数据,捕捉数据中的长期依赖关系
2025-05-12 17:06:02
637
原创 分类预测 | Matlab实现KPCA-ISSA-LSSVM基于核主成分分析和改进麻雀优化算法优化最小二乘支持向量机分类预测
原理:主成分分析(PCA)是一种常用的数据降维方法,通过线性变换将原始数据投影到低维空间,保留主要信息。而核主成分分析(KPCA)引入核函数,将原始数据映射到高维特征空间,然后在高维空间中进行主成分分析。常见的核函数有径向基函数(RBF)、多项式核函数等。通过 KPCA,可以处理非线性数据,提取数据的非线性特征,降低数据维度,减少计算量,同时保留数据的重要信息,提高后续模型的训练效率和预测精度。作用。
2025-05-12 16:56:16
521
原创 【状态估计】基于无迹卡尔曼滤波器 (UKF)、扩展卡尔曼滤波器 (EKF) 和不变扩展卡尔曼滤波器 (IEKF) 来估计状态独轮车系统状态估计附Matlab代码
独轮车系统是一个典型的非线性系统,基于无迹卡尔曼滤波器(UKF)、扩展卡尔曼滤波器(EKF)和不变扩展卡尔曼滤波器(IEKF)对其状态进行估计,有助于准确掌握独轮车的运动状态,为独轮车的控制和导航等应用提供重要支持。
2025-05-11 19:11:49
759
原创 【机器人定位】基于matlab模拟纳米机器人簇多目标打击和定位
原理:纳米机器人簇通常被设计为能够识别特定的目标标志物。例如在医疗领域,癌细胞表面存在一些独特的抗原或受体,纳米机器人可以通过携带能与这些标志物特异性结合的分子,如抗体、适配体等,来精准识别癌细胞。当纳米机器人靠近目标后,可通过多种方式实现打击。如释放携带的药物,像化疗药物、免疫调节药物等,以杀死癌细胞;利用物理手段,如产生局部高温、超声振动等破坏癌细胞;或通过基因编辑技术修复异常基因,从根本上治疗疾病。关键技术:一是高效的药物装载与释放技术,要确保纳米机器人能携带足够的药物,并在到达目标后准确释放。
2025-05-11 18:41:17
576
原创 【LSTM回归预测】基于改进水母算法IAJS优化LSTM实现数据回归预测附Matlab代码
基于改进水母算法(IAJS)优化长短期记忆网络(LSTM)实现数据回归预测,是一种结合智能优化算法和深度学习模型的方法。
2025-05-11 17:06:22
597
原创 【SCI一区】考虑P2G和碳捕集设备的热电联供综合能源系统优化调度模型附Matlab代码
热电联供(CCHP)系统能高效利用能源,但传统 CCHP 系统依赖化石燃料,碳排放较高。P2G 技术可将过剩可再生能源转化为化学能存储,解决可再生能源间歇性和波动性问题;碳捕集设备能捕捉 CCHP 系统燃烧化石燃料产生的二氧化碳,减少排放。将二者融入 CCHP 系统构建综合能源系统是可行途径,但系统结构复杂、运行参数多,对优化调度提出挑战,因此建立相关模型对推动低碳能源体系建设意义重大。
2025-05-11 17:04:53
643
原创 【SCI复现】基于纳什博弈和ADMM的多微网主体能源共享研究附Matlab代码
在能源互联网背景下,多微网主体的能源共享是实现区域能源高效利用的重要途径。基于纳什博弈和交替方向乘子法(ADMM)的研究为解决多微网间的利益分配和优化调度提供了有效方法。
2025-05-11 17:01:36
601
原创 【场景削减】基于DBSCAN密度聚类风电-负荷确定性场景缩减方法附Matlab代码
基于 DBSCAN 密度聚类的风电 - 负荷确定性场景缩减方法是一种用于处理风电和负荷数据,以减少场景数量并保留关键信息的技术。以下是对该方法的详细介绍::DBSCAN(Density - Based Spatial Clustering of Applications with Noise)是一种基于密度的空间聚类算法。其核心思想是将数据点划分为不同的类别,同一类别的数据点在空间中具有较高的密度,而不同类别之间的数据点密度较低。该算法通过寻找数据集中的高密度区域来确定聚类,并将处于低密度区域的数据点视为噪
2025-05-11 16:53:28
576
原创 【动力学】基于matlab模拟压力和温度对铸造凝固的影响动力学
压力和温度是影响铸造凝固过程的重要因素,它们通过对金属液的凝固温度、凝固速度以及晶体生长等方面产生作用,从而影响铸件的微观结构和性能。
2025-05-11 16:49:33
529
原创 【电力系统】考虑特性分布的储能电站接入的电网多时间尺度源储荷协调调度策略附Matlab代码
考虑特性分布的储能电站接入的电网多时间尺度源储荷协调调度策略,是一种为提高区域电网新能源消纳率、降低运行成本及提高供电可靠性而提出的调度策略1。
2025-05-11 16:42:42
527
原创 【SLAM】使用激光雷达传感器和角点提取的EKF SLAM附matlab代码
激光雷达传感器能够精确测量目标物体的距离信息,为 SLAM 系统提供丰富的环境数据。角点作为环境中的特征点,具有良好的稳定性和可识别性。EKF SLAM 利用扩展卡尔曼滤波器对激光雷达数据中的角点进行处理,通过预测和更新步骤,实现对机器人位置和环境地图的估计与更新。
2025-05-11 16:25:45
460
原创 【滤波跟踪】扩展卡尔曼滤波器(EKF)用于GPS附matlab代码
扩展卡尔曼滤波器(EKF)在全球定位系统(GPS)中具有重要应用。GPS 通过接收卫星信号来确定接收器的位置、速度和时间等信息,但由于信号传播过程中存在噪声以及接收器自身的误差,测量数据往往存在一定的不确定性。EKF 能够有效地处理这些不确定性,对 GPS 数据进行滤波跟踪,提高定位精度和可靠性。
2025-05-11 16:23:09
866
双缝干涉图案的二维时域有限差分法附Matlab代码.rar
2025-05-11
使用MATLAB读取、加载和可视化点云,并对数据进行下采样和去噪的预处理、应用仿射变换,如平移和旋转研究附Matlab代码.rar
2025-05-11
使用连续动作空间深度强化学习的算法研究附Python代码.rar
2025-05-11
使用LMS和FxLMS算法进行主动降噪研究附Matlab代码.rar
2025-05-11
使用 PMU(相量测量单元)进行电力系统状态估计【IEEE-14、IEEE30节点】附Matlab代码.rar
2025-05-11
使用HGS算法调整PD控制器增益的无人机动态性能数据——基于启发式的无人机路径跟踪优化附Matlab代码.rar
2025-05-11
时间重分配多同步挤压变换在旋转机械轴承故障诊断中的应用附Matlab代码.rar
2025-05-11
神经网络模糊逻辑自整定PID控制器用于自主水下车辆AUV研究附Matlab代码.rar
2025-05-11
实时傅立叶单像素成像研究附Matlab代码.rar
2025-05-11
确定波音787飞机和F-16战斗猎鹰的着陆速度、性能和稳定性特征研究附Matlab代码.rar
2025-05-11
模拟1GHz电磁波被圆柱形物体散射研究附Matlab代码.rar
2025-05-11
利用 Hough 变换处理量测得到的含杂波的二维坐标,解决多目标航迹起始问题附Matlab代码.rar
2025-05-11
列车-轨道-桥梁交互仿真研究附Matlab代码.rar
2025-05-11
考虑特性分布的储能电站接入的电网多时间尺度源储荷协调调度策略附Matlab代码.rar
2025-05-11
考虑通过控制分布式微发电机的无功功率注入来调节电力配电网的电压配置问题研究【IEEE123节点】附Matlab代码.rar
2025-05-11
锂离子电池模型的电池组配置,探索锂离子电池模型的最佳性能和效率:关于电池组配置、负载选择、C-率、容量和电荷状态(SOC)的全面研究附Simulink仿真.rar
2025-05-11
空时自适应处理用于机载雷达——空时处理基础知识附Matla代码.rar
2025-05-11
考虑柔性负荷的综合能源系统低碳经济优化调度【考虑碳交易机制】附Matlab代码.rar
2025-05-11
考虑灵活性供需不确定性的储能优化配置附Matlab代码.rar
2025-05-11
考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化附Matlab代码.rar
2025-05-11
综合能源系统分析的统一能路理论(三):《稳态与动态潮流计算》附Python代码.rar
2025-05-11
主辅助服务市场出清模型研究【旋转备用】附Matlab代码.rar
2025-05-11
主动配电网故障恢复的重构与孤岛划分统一模型研究【升级版本】附Matlab代码.rar
2025-05-11
在时域中计算悬索桥对风湍流的耦合动态响应附Matlab代码.rar
2025-05-11
元胞自动机模拟病毒传染(SEIR模型)附Python代码.rar
2025-05-11
用于无速度传感器交流电机驱动的扩展卡尔曼滤波器EKF附Matlab代码、Simulink仿真.rar
2025-05-11
在空间领域中通过Copula图模型对极端事件进行建模附Matlab代码.rar
2025-05-11
一种欠定盲源分离方法及其在模态识别中的应用附Matlab代码.rar
2025-05-11
一维时域有限差分法1D FDTD处理材料属性——不同的介电常数附Matlab代码.rar
2025-05-11
用于分析脉冲类信号的二阶瞬态提取变换研究附Matlab代码.rar
2025-05-11
沿测地线路径使用核插值的多模态流形学习附Matlab代码.rar
2025-05-11
学习使用二元分类器检测对象;模板匹配,梯度直方图(HOG)和级联目标检测研究附Matlab代码.rar
2025-05-11
旋转双心室辅助装置的无传感器生理控制、防吸和流量平衡算法附Matlab代码.rar
2025-05-11
通过EEMD进行心脏频率和心电图信号去噪附Matlab代码.rar
2025-05-11
通过介质脊形波导的光的二维时域有限差分法(FDTD)附Matlab代码.rar
2025-05-11
无人机视觉定位研究附Matlab代码.rar
2025-05-11
水下机器人双机械手系统动态建模与控制仿真附Matlab代码.rar
2025-05-11
使用量子自适应变换进行信号和图像去噪附Matlab代码.rar
2025-05-11
使用基于注意力的双向 LSTM 和编码器-解码器进行准确的水质预测研究附Python代码.rar
2025-05-11
拟贝叶斯方法用于基于STFT的稳健模式检测与提取附Matlab代码.rar
2025-05-11
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人