✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
近年来,电力负荷预测在电网安全运行和能源管理中扮演着越来越重要的角色。随着电力系统的日益复杂化,传统的预测方法难以满足实际需求。针对此问题,本文提出了一种基于星雀优化算法(NOA)优化的Transformer-GRU组合模型,用于负荷数据回归预测。该模型利用Transformer强大的时序特征提取能力,结合GRU的记忆能力,有效地捕捉了电力负荷数据的复杂规律。同时,采用NOA算法对模型参数进行优化,提高了模型的泛化能力和预测精度。本文基于真实电力负荷数据进行实验验证,结果表明,所提出的NOA-Transformer-GRU模型在预测精度和稳定性方面均优于传统模型,具有较好的应用价值。
关键词:电力负荷预测,星雀优化算法,Transformer,GRU,回归预测
1. 概述
电力负荷预测是电网运行控制、电力市场交易、能源管理等重要环节的核心技术之一。准确的负荷预测可以有效提高电网运行效率,降低运营成本,并保障电网安全可靠运行。然而,随着电力系统的日益复杂化,电力负荷呈现出高度的非线性、波动性和随机性,传统的预测方法难以准确地捕捉负荷数据的复杂规律。
近年来,深度学习技术在电力负荷预测领域取得了显著进展。其中,Transformer和GRU模型因其强大的时序特征提取能力而受到广泛关注。Transformer模型可以并行处理输入序列,有效地捕获长程依赖关系;而GRU模型可以有效地记忆历史信息,提高预测精度。然而,这些模型通常需要大量的数据进行训练,且其参数的优化问题也较为复杂。
为了进一步提高电力负荷预测精度,本文提出了一种基于星雀优化算法(NOA)优化的Transformer-GRU组合模型。NOA算法是一种新型的群智能优化算法,具有收敛速度快、全局搜索能力强等优点,可以有效地对Transformer-GRU模型的参数进行优化。
2. 相关工作
近年来,电力负荷预测领域涌现了许多基于深度学习的模型。其中,一些学者将RNN模型应用于负荷预测,例如LSTM和GRU模型。这些模型可以有效地捕获时间序列数据的依赖关系,并取得了较好的预测效果。然而,RNN模型在处理长程依赖关系时存在效率低下问题。
为了解决RNN模型的不足,Transformer模型被引入到电力负荷预测领域。Transformer模型可以并行处理输入序列,有效地捕获长程依赖关系,并取得了优于RNN模型的预测精度。然而,Transformer模型通常需要大量的训练数据,且其参数的优化问题也较为复杂。
针对上述问题,一些学者尝试使用优化算法对Transformer模型进行参数优化,例如遗传算法、粒子群算法等。这些算法可以有效地提高模型的泛化能力和预测精度。
3. 基于NOA-Transformer-GRU的负荷预测模型
3.1 模型结构
本文提出的NOA-Transformer-GRU模型结构如图1所示。模型主要由三个部分组成:Transformer编码器、GRU层和输出层。
-
Transformer编码器:Transformer编码器用于提取输入序列的时序特征。它包含多个编码层,每个编码层由多头自注意力机制、前馈神经网络和层归一化组成。多头自注意力机制可以有效地捕捉序列之间的长程依赖关系,前馈神经网络则进一步提取特征。
-
GRU层:GRU层用于记忆历史信息,提高预测精度。它包含多个GRU单元,每个GRU单元接收Transformer编码器的输出作为输入,并输出包含历史信息的特征。
-
输出层:输出层将GRU层的输出映射到预测值。
3.2 星雀优化算法
星雀优化算法(NOA)是一种新型的群智能优化算法,模拟了星雀觅食行为。NOA算法具有以下特点:
-
收敛速度快:NOA算法采用随机搜索机制,可以快速找到最优解。
-
全局搜索能力强:NOA算法的搜索范围广,可以有效地避免陷入局部最优。
-
参数少:NOA算法仅需设置少数参数,易于实现。
3.3 参数优化
本文采用NOA算法对Transformer-GRU模型的参数进行优化。具体而言,将模型参数编码成NOA算法的个体,并利用NOA算法的搜索机制寻找最优的参数组合。
4. 实验结果与分析
4.1 数据集
本文使用某地区真实电力负荷数据进行实验验证,数据时间跨度为2019年1月1日至2020年12月31日,包含每小时的负荷数据。
4.2 实验设置
将数据集分为训练集、验证集和测试集,比例分别为70%、15%和15%。实验中,将本文提出的NOA-Transformer-GRU模型与以下模型进行比较:
-
ARIMA模型:一种传统的统计预测模型。
-
LSTM模型:一种常用的深度学习预测模型。
-
Transformer模型:一种基于注意力机制的深度学习预测模型。
4.3 评价指标
采用均方根误差(RMSE)和平均绝对误差(MAE)作为模型评价指标。
4.4 实验结果
实验结果如表1所示,本文提出的NOA-Transformer-GRU模型在RMSE和MAE指标上均优于其他模型,证明了该模型的有效性。
5. 结论
本文提出了一种基于星雀优化算法NOA-Transformer-GRU的负荷数据回归预测算法。该模型充分利用了Transformer和GRU模型的优势,并通过NOA算法对模型参数进行优化,提高了模型的预测精度和泛化能力。实验结果表明,该模型在预测精度方面优于其他模型,具有较好的应用价值。
6. 未来工作
未来工作将着重于以下几个方面:
-
探索其他优化算法,进一步提高模型的预测精度。
-
将该模型应用于其他电力负荷预测场景,例如短期负荷预测和分布式负荷预测。
-
研究模型的鲁棒性和可解释性。
⛳️ 运行结果
🔗 参考文献
[1] 郑林江,龙颢.一种基于Transformer框架的多变量长序列时间序列预测模型的构建方法:CN202210162689.2[P].CN202210162689.2[2024-07-19].
[2] 蔡美玲,汪家喜,刘金平,等.基于Transformer GAN架构的多变量时间序列异常检测[J].中国科学:信息科学, 2023, 53(5):972-992.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类