【电场】基于matlab模拟D2Q9模型LBM圆柱绕流

本文详细介绍了使用D2Q9模型的格子Boltzmann方法在圆柱绕流模拟中的应用,包括LBM的基本原理、D2Q9模型的实现以及其在数值模拟中的效果。作者还探讨了LBM在这一领域的优势和未来应用前景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

本文介绍了使用 D2Q9 模型的格子 Boltzmann 方法 (LBM) 模拟圆柱绕流。LBM 是一种基于粒子动力学的计算流体动力学方法,它可以有效地模拟复杂流动现象。D2Q9 模型是一种常见的 LBM 模型,它具有九个离散速度方向。本文首先介绍了 LBM 的基本原理和 D2Q9 模型的具体实现。然后,本文展示了使用 D2Q9 模型模拟圆柱绕流的数值结果。最后,本文总结了模拟结果并讨论了 LBM 在模拟圆柱绕流中的应用前景。

引言

圆柱绕流是一种常见的流动现象,它广泛存在于工程和自然界中。圆柱绕流的特性对许多工程应用至关重要,例如风力涡轮机、桥梁和建筑物的流体力学设计。传统的计算流体动力学 (CFD) 方法,如有限体积法和有限元法,可以用来模拟圆柱绕流。然而,这些方法通常需要大量的计算资源,并且对于复杂几何形状的流动模拟存在困难。

LBM 是一种基于粒子动力学的 CFD 方法,它可以有效地模拟复杂流动现象。LBM 的基本原理是将流体视为由大量粒子组成的。这些粒子在离散的格子空间中移动,并且相互碰撞。粒子的碰撞遵循特定的规则,这些规则由 LBM 模型定义。D2Q9 模型是一种常见的 LBM 模型,它具有九个离散速度方向。D2Q9 模型可以有效地模拟二维不可压缩流动。

LBM 基本原理

LBM 的基本原理是基于玻尔兹曼方程。玻尔兹曼方程描述了流体中粒子的分布函数随时间和空间的变化。LBM 通过求解玻尔兹曼方程的离散形式来模拟流体流动。

D2Q9 模型的玻尔兹曼方程离散形式为:

 

f_i(x + e_i, t + 1) - f_i(x, t) = - \frac{1}{\tau} (f_i(x, t) - f_i^{eq}(x, t))

 

f_i^{eq}(x, t) = \omega_i \rho(x, t) [1 + \frac{e_i \cdot u(x, t)}{c_s^2} + \frac{(e_i \cdot u(x, t))^2}{2c_s^4} - \frac{u(x, t) \cdot u(x, t)}{2c_s^2}]

其中:

圆柱绕流模拟

📣 部分代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cylinder.m: Flow around a cyliner, using LBM        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% This program is free software; you can redistribute it and/or% modify it under the terms of the GNU General Public License% as published by the Free Software Foundation; either version 2% of the License, or (at your option) any later version.% This program is distributed in the hope that it will be useful,% but WITHOUT ANY WARRANTY; without even the implied warranty of% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the% GNU General Public License for more details.% You should have received a copy of the GNU General Public % License along with this program; if not, write to the Free % Software Foundation, Inc., 51 Franklin Street, Fifth Floor,% Boston, MA  02110-1301, USA.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%clear% GENERAL FLOW CONSTANTSlx         = 250;ly         = 51;obst_x = lx/5+1;   % position of the cylinder; (exactobst_y = ly/2+1;   % y-symmetry is avoided)obst_r = ly/10+1;  % radius of the cylinderuMax  = 0.02;      % maximum velocity of Poiseuille inflowRe     = 100;      % Reynolds numbernu    = uMax * 2.*obst_r / Re;   % kinematic viscosityomega  = 1. / (3*nu+1./2.);      % relaxation parametermaxT   = 400000;   % total number of iterationstPlot  = 5;        % cycles% D2Q9 LATTICE CONSTANTSt  = [4/9, 1/9,1/9,1/9,1/9, 1/36,1/36,1/36,1/36];cx = [  0,   1,  0, -1,  0,    1,  -1,  -1,   1];cy = [  0,   0,  1,  0, -1,    1,   1,  -1,  -1];opp = [ 1,   4,  5,  2,  3,    8,   9,   6,   7];col = [2:(ly-1)];[y,x] = meshgrid(1:ly,1:lx);obst = (x-obst_x).^2 + (y-obst_y).^2 <= obst_r.^2;obst(:,[1,ly]) = 1;bbRegion = find(obst);

⛳️ 运行结果

🔗 参考文献

[1] 王文全,陈相臻,王志良.基于浸入边界–格子Boltzmann方法模拟动边界绕流问题[J].流体动力学, 2018, 6(3):8.DOI:10.12677/IJFD.2018.63006.

[2] 王龙.圆柱绕流的LBM模拟[J].北京大学学报(自然科学版)(5):647-652[2024-03-02].DOI:10.3321/j.issn:0479-8023.2002.05.009.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值