【独家首发】Matlab实现白鹭群优化算法ESOA优化Transformer-LSTM实现负荷数据回归预测

    ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

摘要

随着电力系统负荷预测的重要性日益凸显,近年来,深度学习技术在该领域取得了显著进展。Transformer-LSTM 模型因其强大的特征提取能力和时间序列建模能力,成为电力负荷预测的热门选择。然而,该模型存在超参数调优困难、易陷入局部最优等问题。为此,本文提出了一种基于白鹭群优化算法 (ESOA) 优化的 Transformer-LSTM 模型,用于电力负荷数据回归预测。ESOA 是一种新型的群体智能优化算法,具有较强的全局搜索能力和收敛速度。通过 ESOA 对 Transformer-LSTM 模型的超参数进行优化,可以有效地提高模型的预测精度和泛化能力。本文在真实电力负荷数据上进行了实验,结果表明,与其他优化算法相比,ESOA 优化的 Transformer-LSTM 模型取得了更好的预测性能。

1. 引言

电力负荷预测是电力系统安全稳定运行和经济调度的重要基础。准确预测电力负荷可以有效提高电网运行效率,降低运营成本,并为电网规划和投资提供决策支持。近年来,随着电力负荷数据量的不断增长和深度学习技术的快速发展,基于深度学习的电力负荷预测方法逐渐成为研究热点。

Transformer-LSTM 模型结合了 Transformer 的全局依赖建模能力和 LSTM 的时间序列建模能力,在电力负荷预测方面展现出良好的潜力。然而,Transformer-LSTM 模型的超参数数量较多,如学习率、隐藏层大小、注意力头数等,这些超参数对模型的性能影响很大。传统的网格搜索和随机搜索方法效率低,难以找到最优参数组合。因此,如何有效地优化 Transformer-LSTM 模型的超参数,使其能够更好地适应电力负荷数据,成为亟待解决的关键问题。

白鹭群优化算法 (ESOA) 是一种新型的群体智能优化算法,模拟了白鹭觅食的群体行为,具有较强的全局搜索能力和收敛速度。本文提出了一种基于 ESOA 优化的 Transformer-LSTM 模型,用于电力负荷数据回归预测。ESOA 通过优化 Transformer-LSTM 模型的超参数,提高了模型的预测精度和泛化能力。

2. 模型方法

2.1 Transformer-LSTM 模型

Transformer-LSTM 模型结合了 Transformer 和 LSTM 模型的优势,能够有效地提取电力负荷数据中的时间特征和空间特征。Transformer 模块能够捕捉输入序列中长距离依赖关系,而 LSTM 模块则擅长处理时间序列数据。

Transformer 模块主要由自注意力机制和前馈神经网络组成。自注意力机制可以计算输入序列中不同位置之间的关系,从而提取序列特征。前馈神经网络则用于对自注意力机制输出的特征进行非线性变换。

LSTM 模块是一种循环神经网络,能够记住过去的信息并将其应用于当前的预测。LSTM 模块包含三个门控机制:遗忘门、输入门和输出门。遗忘门决定哪些过去信息需要被遗忘,输入门决定哪些新信息需要被记住,输出门决定哪些信息需要被输出。

2.2 白鹭群优化算法 (ESOA)

ESOA 是一种模拟白鹭群体觅食行为的群体智能优化算法。白鹭在觅食过程中会根据自身经验和周围环境进行搜索,并不断优化自己的觅食策略。ESOA 算法利用了白鹭的群体行为特点,通过群体合作来寻找最优解。

ESOA 算法主要包括以下步骤:

  1. 初始化白鹭群。
  2. 评估每个白鹭的适应度值。
  3. 更新白鹭的位置。
  4. 重复步骤 2-3,直到满足停止条件。

2.3 ESOA 优化 Transformer-LSTM 模型

本文利用 ESOA 算法优化 Transformer-LSTM 模型的超参数,以提高模型的预测精度。具体步骤如下:

  1. 将 Transformer-LSTM 模型的超参数作为 ESOA 算法的优化变量。
  2. 训练 Transformer-LSTM 模型,并使用预测误差作为 ESOA 算法的适应度函数。
  3. 利用 ESOA 算法优化 Transformer-LSTM 模型的超参数,找到最优参数组合。
  4. 使用优化后的 Transformer-LSTM 模型进行电力负荷预测。

    结论

    本文提出了一种基于 ESOA 优化的 Transformer-LSTM 模型,用于电力负荷数据回归预测。ESOA 算法通过优化 Transformer-LSTM 模型的超参数,提高了模型的预测精度和泛化能力。实验结果表明,ESOA 优化的 Transformer-LSTM 模型取得了良好的预测效果,为电力负荷预测提供了新的思路。

    未来展望

    未来将进一步研究以下方向:

  5. 将 ESOA 算法应用于其他深度学习模型,例如 CNN、RNN 等,以提升其性能。
  6. 探索 ESOA 算法与其他优化算法的结合,以提高优化效率。
  7. 研究 ESOA 算法在其他领域,例如目标跟踪、图像识别等方面的应用。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值