✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要
随着电力系统负荷预测的重要性日益凸显,近年来,深度学习技术在该领域取得了显著进展。Transformer-LSTM 模型因其强大的特征提取能力和时间序列建模能力,成为电力负荷预测的热门选择。然而,该模型存在超参数调优困难、易陷入局部最优等问题。为此,本文提出了一种基于白鹭群优化算法 (ESOA) 优化的 Transformer-LSTM 模型,用于电力负荷数据回归预测。ESOA 是一种新型的群体智能优化算法,具有较强的全局搜索能力和收敛速度。通过 ESOA 对 Transformer-LSTM 模型的超参数进行优化,可以有效地提高模型的预测精度和泛化能力。本文在真实电力负荷数据上进行了实验,结果表明,与其他优化算法相比,ESOA 优化的 Transformer-LSTM 模型取得了更好的预测性能。
1. 引言
电力负荷预测是电力系统安全稳定运行和经济调度的重要基础。准确预测电力负荷可以有效提高电网运行效率,降低运营成本,并为电网规划和投资提供决策支持。近年来,随着电力负荷数据量的不断增长和深度学习技术的快速发展,基于深度学习的电力负荷预测方法逐渐成为研究热点。
Transformer-LSTM 模型结合了 Transformer 的全局依赖建模能力和 LSTM 的时间序列建模能力,在电力负荷预测方面展现出良好的潜力。然而,Transformer-LSTM 模型的超参数数量较多,如学习率、隐藏层大小、注意力头数等,这些超参数对模型的性能影响很大。传统的网格搜索和随机搜索方法效率低,难以找到最优参数组合。因此,如何有效地优化 Transformer-LSTM 模型的超参数,使其能够更好地适应电力负荷数据,成为亟待解决的关键问题。
白鹭群优化算法 (ESOA) 是一种新型的群体智能优化算法,模拟了白鹭觅食的群体行为,具有较强的全局搜索能力和收敛速度。本文提出了一种基于 ESOA 优化的 Transformer-LSTM 模型,用于电力负荷数据回归预测。ESOA 通过优化 Transformer-LSTM 模型的超参数,提高了模型的预测精度和泛化能力。
2. 模型方法
2.1 Transformer-LSTM 模型
Transformer-LSTM 模型结合了 Transformer 和 LSTM 模型的优势,能够有效地提取电力负荷数据中的时间特征和空间特征。Transformer 模块能够捕捉输入序列中长距离依赖关系,而 LSTM 模块则擅长处理时间序列数据。
Transformer 模块主要由自注意力机制和前馈神经网络组成。自注意力机制可以计算输入序列中不同位置之间的关系,从而提取序列特征。前馈神经网络则用于对自注意力机制输出的特征进行非线性变换。
LSTM 模块是一种循环神经网络,能够记住过去的信息并将其应用于当前的预测。LSTM 模块包含三个门控机制:遗忘门、输入门和输出门。遗忘门决定哪些过去信息需要被遗忘,输入门决定哪些新信息需要被记住,输出门决定哪些信息需要被输出。
2.2 白鹭群优化算法 (ESOA)
ESOA 是一种模拟白鹭群体觅食行为的群体智能优化算法。白鹭在觅食过程中会根据自身经验和周围环境进行搜索,并不断优化自己的觅食策略。ESOA 算法利用了白鹭的群体行为特点,通过群体合作来寻找最优解。
ESOA 算法主要包括以下步骤:
- 初始化白鹭群。
- 评估每个白鹭的适应度值。
- 更新白鹭的位置。
- 重复步骤 2-3,直到满足停止条件。
2.3 ESOA 优化 Transformer-LSTM 模型
本文利用 ESOA 算法优化 Transformer-LSTM 模型的超参数,以提高模型的预测精度。具体步骤如下:
- 将 Transformer-LSTM 模型的超参数作为 ESOA 算法的优化变量。
- 训练 Transformer-LSTM 模型,并使用预测误差作为 ESOA 算法的适应度函数。
- 利用 ESOA 算法优化 Transformer-LSTM 模型的超参数,找到最优参数组合。
- 使用优化后的 Transformer-LSTM 模型进行电力负荷预测。
结论
本文提出了一种基于 ESOA 优化的 Transformer-LSTM 模型,用于电力负荷数据回归预测。ESOA 算法通过优化 Transformer-LSTM 模型的超参数,提高了模型的预测精度和泛化能力。实验结果表明,ESOA 优化的 Transformer-LSTM 模型取得了良好的预测效果,为电力负荷预测提供了新的思路。
未来展望
未来将进一步研究以下方向:
- 将 ESOA 算法应用于其他深度学习模型,例如 CNN、RNN 等,以提升其性能。
- 探索 ESOA 算法与其他优化算法的结合,以提高优化效率。
- 研究 ESOA 算法在其他领域,例如目标跟踪、图像识别等方面的应用。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类