【信号去噪】基于奇异值分解(SVD)实现数字信号降噪含Matlab源码

 1 简介

2 部分代码

clear;% 调用MATLAB中含有噪声的数据文件 leleccum; load leleccum; index=1:3000;x=leleccum(index);N=8;slength = length(x);M=slength-100;subplot(221);plot(x(1:M));title('原始信号');% 形成数据矩阵;Signal=zeros(N,M);for i=1:N   Signal(i,:)=x(i:M+i-1);end% 对数据矩阵作特征值分解;[U, S, V]=svd(Signal);d=diag(S(1:N,1:N));subplot(222);stem(d);title('特征值');for i=1:N   if d(i)<mean(d)      d(i)=0;   endend stemp=S;stemp(1:8,1:8)=diag(d);Sf=U*stemp*V';subplot(223);plot(Sf(1,:));title('滤波之后的信号;阈值为特征值的平均值');d=diag(S(1:N,1:N));for i=1:N      if d(i)<=median(d)      d(i)=0;   endendstemp=S;stemp(1:8,1:8)=diag(d);Sf=U*stemp*V';subplot(224);plot(Sf(1,:));title('滤波之后的信号;阈值为特征值的中值');

3 仿真结果

4 参考文献

[1]赵海峰等. "基于奇异值分解的侵彻过载信号降噪方法." 振动.测试与诊断 35.4(2015):7.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

5 代码下载

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值