奇异值分解(SVD)实现简单的图像降噪处理

奇异值(Singular Value)往往对应着矩阵中的隐含的重要信息,且重要性与奇异值大小呈正相关。

关于奇异值的知识,可以参考:机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用


一般来说,较少的奇异值就可以表达一个矩阵很重要的信息,所以我们可以舍掉一部分奇异值来实现压缩。

在图像处理中,奇异值小的部分往往代表着噪声,因此可以借助SVD算法来实现去噪。


选取图像如下,


可以看到,人物脸上的雀斑是我们需要去掉的噪声。

分别取前0.5%、1%、5%的奇异值,得到的图像依次是:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值