奇异值(Singular Value)往往对应着矩阵中的隐含的重要信息,且重要性与奇异值大小呈正相关。
关于奇异值的知识,可以参考:机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用
一般来说,较少的奇异值就可以表达一个矩阵很重要的信息,所以我们可以舍掉一部分奇异值来实现压缩。
在图像处理中,奇异值小的部分往往代表着噪声,因此可以借助SVD算法来实现去噪。
选取图像如下,
可以看到,人物脸上的雀斑是我们需要去掉的噪声。
分别取前0.5%、1%、5%的奇异值,得到的图像依次是: