【图像去噪】基于自适应EM算法实现图像去噪附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测 雷达通信  无线传感器

信号处理 图像处理 路径规划 元胞自动机 无人机

⛄ 内容介绍

In order to improve the denoising effect of natural image based-patch prior and effectively remove the noise in the image,this paper proposes Expectation Maximization adaptation learning process by using the statistical characteristics of image blocks to learn image block priors,which generates specific prior by mapping a generic prior to the specified image. Compared with the standard EM algorithm,the proposed method needs less training data,and can be applied to the pre-filtered image in the absence of clean databases. The experimental results show that the proposed algorithm is superior to the existing image denoising algorithms.

⛄ 部分代码

clear;

close all;

addpath('code');

addpath('data/standard_images')​

load GSModel_8x8_200_2M_noDC_zeromean.mat

GMM.ncomponents = GS.nmodels;

GMM.mus = GS.means;

GMM.covs = GS.covs;

GMM.weights = GS.mixweights;

clear GS;

x = im2double(imread('House256.png'));

sigmaNoise = 20/255;

y = x + sigmaNoise * randn(size(x));        % noisy test image

%%%% EPLL denoising %%%%

xEPLL = y;

for sigma = sigmaNoise * [1, 1/sqrt(4), 1/sqrt(8), 1/sqrt(16), 1/sqrt(32)]

    [xEPLL, psnr_EPLL, ssim_EPLL] = MAP_GMM(x, y, xEPLL, sigmaNoise, sigma, GMM);

end

fprintf('PSNR(EPLL) is:%.2f\n', psnr_EPLL);

fprintf('SSIM(EPLL) is:%.4f\n', ssim_EPLL);

%%%% EM adaptation using EPLL denoised image and MAP denoising with adapted GMM %%%%

xHat = xEPLL;

epsilon = 0.01;

b = randn(size(y));

n = numel(y);

xEPLL1 = y + epsilon*b;

for sigma = sigmaNoise * [1, 1/sqrt(4), 1/sqrt(8), 1/sqrt(16), 1/sqrt(32)]

    [xEPLL1, ~, ~] = MAP_GMM(x, y + epsilon*b, xEPLL1, sigmaNoise, sigma, GMM);

end

xHat1 = xEPLL1;

div = (b(:)'*(xHat1(:) - xHat(:))) / (n*epsilon);

beta_opt = (sqrt(mean((y(:) - xHat(:)).^2) - sigmaNoise^2 + 2*sigmaNoise^2*div)) / sigmaNoise;

aGMM = EM_adaptation(GMM, xEPLL, beta_opt * sigmaNoise, 1);

xAdapted_EPLL = y;

for sigma = sigmaNoise * [1, 1/sqrt(4), 1/sqrt(8), 1/sqrt(16), 1/sqrt(32)]

    [xAdapted_EPLL, psnr_adapted, ssim_adapted] = MAP_GMM(x, y, xAdapted_EPLL, sigmaNoise, sigma, aGMM);

end

fprintf('PSNR(adapted by EPLL image) is:%.2f\n', psnr_adapted);

fprintf('SSIM(adapted by EPLL image) is:%.4f\n', ssim_adapted);

figure

subplot(131)

imshow(x);

title('原图')

subplot(132)

imshow(y);

title('加噪图')

subplot(133)

imshow(xAdapted_EPLL);

title(['去噪图,PSNR=',num2str(psnr_adapted)])

return

⛄ 运行结果

⛄ 参考文献

[1] Lei Y . Baesd-patch Daptive Image Denoising with EM Algorithm[J]. Science Mosaic, 2017.

❤️ 关注我领取海量matlab电子书和数学建模资料

❤️部分理论引用网络文献,若有侵权联系博主删除

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值