✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
ADMSS 大大缓解了各向异性扩散滤波器的主要问题之一 [1]:由于扩散过程中局部结构定义的丢失而导致的过度过滤效应。这是通过包含以扩散张量的微分延迟方程 (DDE) 形式实现的概率组织选择性记忆机制来实现的。记忆在无意义的区域被关闭,但在详细的结构区域被激活,这种区分是以贝叶斯概率的方式进行的。因此,现在遵循时间 Volterra 方程的扩散通量在时间上被正则化,并且通过更重视初始扩散通量而不是瞬时扩散通量来仅在详细区域跟踪初始信息。相比之下,应用于 US 过滤后,ADMSS 可保留诊断相关组织中的斑点并去除血液区域中的斑点。概率组织特征是通过精确的最先进的散斑特征描述方法执行的,该方法利用伽马/正态密度函数混合模型.
⛄ 部分代码
%In this demo, an IVUS image is filtered with the Anisotropic Diffusion
%Filter with memory. Probabilty maps are learned internally in each
%iteration.
%%
clear all, clc, close all
addpath(strcat(pwd,'/utils'));
Im0=double(imread([pwd,'/images/IVUS.png']));
%% Parameters definition
AD_param.sigma=0.1;
AD_param.rho=0.1;
AD_param.nitmax=30;
AD_param.n_memory=15;
AD_param.delta_t=0.5;
AD_param.estim='Gamma';
%% Filtering
Im_filt=ADMSS_2D(Im0,ones(size(Im0)),AD_param); %No background. Mask contains only 1s
%% Visualization
disp('Done!, now visualizing results');
figure(1)
imshow([Im0,Im_filt],[])
title('Original Filtered')
⛄ 运行结果
⛄ 参考文献
[1]阮江涛, 佟景伟, 王世斌. 基于各向异性扩散的电子散斑图像去噪[J]. 2010.
[1]Aja-Fernandez, Santiago, Alberola-Lopez, et al. Anisotropic Diffusion Filter With Memory Based on Speckle Statistics for Ultrasound Images[J]. IEEE Transactions on Image Processing, 2015.
⛄ 完整代码
❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料