基于Matlab模拟Swerling 0~4型目标检测概率随信噪比变化的曲线

文章介绍了雷达信号处理中视频积累技术的重要性,特别是在提高信噪比和目标检测性能上的应用。通过Matlab代码展示了不同Swerling模型在不同信号积累次数下的检测概率(Pd)与信噪比(SNR)关系,探讨了N值变化对结果的影响。
摘要由CSDN通过智能技术生成

​✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

随着雷达信号处理技术的发展以及新型隐身武器的不断出现,现代战争对雷达探测目标的性能提出了更高的要求,探测目标性能的提高在很大程度上是依赖于信号信噪比的提高。雷达回波信号不但有微弱的信号还会有很强的噪声,微弱的信号通常被噪声所淹没。此时只有提高信号的信噪比才能把微弱的目标信号从噪声中分离出来,进而提高对目标检测的性能。视频积累是提高信噪比的一种重要方法,这使得视频积累技术在雷达信号处理中发挥的作用越来越重要。

⛄ 部分代码

tic;

clc;

clear all;

close all;

SNRdB=-10:0.5:20;

SNR=10.^(SNRdB/10); %信噪比

N=[1 10 10 1000];

for i=1:4;

Pd0(i,:)=Pd_swerling0(N(i));

Pd1(i,:)=Pd_swerling1(N(i));

Pd2(i,:)=Pd_swerling2(N(i));

Pd3(i,:)=Pd_swerling3(N(i));

Pd4(i,:)=Pd_swerling4(N(i));

end

figure 

Q1=plot(SNRdB,Pd0(1,:),'-r',SNRdB,Pd1(1,:),'--g',SNRdB,Pd2(1,:),'-.b',SNRdB,Pd3(1,:),':k',SNRdB,Pd4(1,:),'+m');

set(Q1,'LineWidth',2);

legend('Swerling0','Swerling1','Swerling2','Swerling3','Swerling4',0)

xlabel('SNR/dB');ylabel('检测概率Pd');axis([-10 20 0 1]);

title('N=1');

grid on;

figure 

Q2=plot(SNRdB,Pd0(2,:),'-r',SNRdB,Pd1(2,:),'--g',SNRdB,Pd2(2,:),'-.b',SNRdB,Pd3(2,:),':k',SNRdB,Pd4(2,:),'+m');

grid on

set(Q2,'LineWidth',2);

legend('Swerling0','Swerling1','Swerling2','Swerling3','Swerling4',0)

xlabel('SNR/dB');ylabel('检测概率Pd');axis([-10 20 0 1])

title('N=10')

figure 

Q3=plot(SNRdB,Pd0(3,:),'-r',SNRdB,Pd1(3,:),'--g',SNRdB,Pd2(3,:),'-.b',SNRdB,Pd3(3,:),':k',SNRdB,Pd4(3,:),'+m');

title('N=100')

set(Q3,'LineWidth',2);

legend('Swerling0','Swerling1','Swerling2','Swerling3','Swerling4',0)

xlabel('SNR/dB');ylabel('检测概率Pd');axis([-10 20 0 1]);

grid on;

figure  

Q4=plot(SNRdB,Pd0(4,:),'-r',SNRdB,Pd1(4,:),'--g',SNRdB,Pd2(4,:),'-.b',SNRdB,Pd3(4,:),':k',SNRdB,Pd4(4,:),'+m');

grid on;

set(Q4,'LineWidth',2);

legend('Swerling0','Swerling1','Swerling2','Swerling3','Swerling4',0)

xlabel('SNR/dB');ylabel('检测概率Pd');axis([-10 20 0 1]);

title('N=1000')

toc;

⛄ 运行结果

⛄ 参考文献

[1] 朱振军. 雷达视频积累器的设计及实现[D]. 江苏科技大学.

[2] 汤俊, 伍勇, 彭应宁,等. MIMO雷达对空域Rician起伏目标检测性能研究[J]. 中国科学:信息科学, 2009(8):9.

[3] 高世鹰. 基于虚拟仪器技术的雷达起伏回波模拟和检测概率测试[D]. 中国工程物理研究院.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值