【信号去噪】基于多窗口谱减法实现信号去噪附matlab代码

文章介绍了基于MATLAB的多窗口谱减法语音去噪算法,通过数字信号处理和通信原理,对语音信号进行去噪处理。作者提供了一段示例代码展示算法实现,并讨论了其效果。此外,还提到了相关参考文献和资源获取方式。
摘要由CSDN通过智能技术生成

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

结合笔者所学的数字信号处理课程和通信原理课程,揭示了谱减法语音去噪算法的理论依据.结合MATLAB语言,编写多窗口谱减法语音去噪算法并进行仿真,对比去噪前后的语音效果,对深入学习和理解数字信号处理课程有一定意义.​

⛄ 部分代码

%

% 多窗谱改进的谱减法

clear all; clc; close all;

filedir=[];                             % 指定文件路径

filename='bluesky1.wav';                % 指定文件名

fle=[filedir filename]                  % 构成路径和文件名的字符串

[xx,fs]=audioread(fle);                   % 读入数据文件

xx=xx-mean(xx);                         % 消除直流分量

x=xx/max(abs(xx));                      % 幅值归一化

SNR=5;                                  % 设置初始信噪比

[signal,n0]=Gnoisegen(x,SNR);           % 叠加噪声

snr1=SNR_singlech(x,signal);            % 计算叠加噪后的信噪比

IS=0.15;                                % 前导无话段长度(s)

⛄ 运行结果

⛄ 参考文献

[1] 曹银萍, 郭璐. 基于MATLAB的小波分析在信号去噪中的应用[J]. 信息记录材料, 2018, 19(7):3.

[2] 白芳芳, 苗长云, 张诚,等. 心音信号去噪算法的Matlab仿真及DSP实现[J]. 新型工业化, 2011, 000(008):77-84.

[3] 汤维维. 基于MATLAB的谱相减语音增强算法的设计与实现[J].  2006.

[4] 白芳芳, 苗长云, 张诚,等. 心音信号去噪算法的Matlab仿真及DSP实现[J]. 新型工业化, 2011.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

 

语音增强是语音信号处理中的一个重要问题。其中,基于EMD的去噪谱减法是一种常用的语音增强方法。下面是该方法的matlab代码及算法思路。 算法思路: 1. 对输入的语音信号进行EMD分解,得到多个IMF分量。 2. 选择需要增强的IMF分量,并对其进行谱减法处理。 3. 对处理后的IMF分量进行反变换,得到增强后的语音信号。 4. 对增强后的语音信号进行后处理,如均衡化、归一化等。 Matlab代码: 1. EMD分解 ```matlab % 输入语音信号 [x,fs] = audioread('input.wav'); % EMD分解 imf = emd(x); % 绘制IMF分量 for i = 1:size(imf,2) subplot(size(imf,2),1,i); plot(imf(:,i)); title(['IMF ' num2str(i)]); end ``` 2. 谱减法处理 ```matlab % 选择需要增强的IMF分量 imf_enhance = imf(:,2); % 谱减法处理 win_size = round(fs*0.025); % 窗口大小 win_shift = round(fs*0.01); % 窗口移动步长 nfft = 2^nextpow2(win_size); % FFT点数 alpha = 2; % 调整因子 for i = 1:win_shift:length(imf_enhance)-win_size % 分帧 frame = imf_enhance(i:i+win_size-1); % FFT frame_fft = fft(frame,nfft); % 计算功率谱 power = abs(frame_fft).^2; % 计算噪声谱 if i == 1 noise_power = power; else noise_power = alpha*noise_power+(1-alpha)*power; end % 谱减 power_enhance = max(power-noise_power,0); % IFFT frame_enhance = real(ifft(sqrt(power_enhance).*frame_fft,nfft)); % 重叠加和 if i == 1 imf_enhance(i:i+win_size-1) = frame_enhance; else imf_enhance(i+win_shift:i+win_size-1) = imf_enhance(i+win_shift:i+win_size-1)+frame_enhance(win_shift+1:end); end end ``` 3. 反变换 ```matlab % 反变换 x_enhance = sum(imf(:,[1 3:end]),2)+imf_enhance; % 写入输出文件 audiowrite('output.wav',x_enhance,fs); ``` 4. 后处理 ```matlab % 后处理,如均衡化、归一化等 x_enhance = x_enhance/max(abs(x_enhance)); ``` 以上就是基于EMD去噪谱减法的语音增强法的matlab代码及算法思路。需要注意的是,该方法在实际应用中可能需要根据实际情况进行参数调整才能得到更好的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值