✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
利用matlab软件进行汉明码仿真,包含了编码、译码。同时译码分别采用了软判决+最小欧式距离译码、硬判决+最小汉明距离译码方法。
⛄ 部分代码
BitSeq=randi([0,1],[5120000,2]); %生成比特序列
SymbolSeq=bi2de(BitSeq,'left-msb'); %比特序列转化为符号序列
ModulatedSeq=qammod(SymbolSeq,4); %调制后的信号序列
%QPSK实际误码率:
error=zeros([1,11]);
for ebno=0:1:10
AWGNChannel = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (Eb/No)','EbNo',ebno,'BitsPerSymbol',2,'SignalPower',mean(abs(ModulatedSeq).^2));
outsignal=AWGNChannel(ModulatedSeq);
recv=qamdemod(outsignal,4);
rec=de2bi(recv,'left-msb');
[~,error(ebno+1)]=biterr(rec,BitSeq);
end
semilogy(0:1:10,error,'o-');
grid on
axis([0,10,1e-5,1])
hold on
xlabel('Eb/No');
ylabel('BER');
title('AWGN');
%%
BitSeq=randi([0,1],[512000,4]); %生成比特序列
BitSeq_1 = reshape(BitSeq',[2048000,1]);
BitSeq_Encode = encode(BitSeq_1,7,4,'hamming/binary');
ModulatedSeq=qammod(BitSeq_Encode,4,'InputType','bit'); %调制后的信号序列
error=zeros([1,11]);
for ebno=0:1:10
AWGNChannel = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (Eb/No)','EbNo',ebno,'BitsPerSymbol',2,'SignalPower',mean(abs(ModulatedSeq).^2)*7/4);
outsignal=AWGNChannel(ModulatedSeq);
recv = qamdemod(outsignal,4,'OutputType','bit');
rec = decode(recv,7,4,'hamming/binary');
[~,error(ebno+1)]=biterr(rec,BitSeq_1);
end
semilogy(0:1:10,error,'o-');
legend('Uncoded','Soft decision','Hard decision')
%%
function [res] = SoftD(Seq)
% 软判决函数
% INPUT:接收到的编码后的符号
% OUTPUT:软判决后的比特序列
global ModulatedY;
global base;
dist = sum(dis_complex(ModulatedY,Seq),2);
[~,index] = min(dist);
res = base(index,:);
end
function [res] = dis_complex(a,b)
% 复数欧式距离函数
res = sqrt((imag(a)-imag(b)).^2+(real(a)-real(b)).^2);
end
⛄ 运行结果
⛄ 参考文献
[1] 于洪涛.基于均值匹配的Turbo码联合译码的Matlab实现[D].哈尔滨工业大学[2023-07-22].DOI:CNKI:CDMD:2.2009.229135.
[2] 曹亚陆.基于Matlab的卷积码译码器的设计与仿真[J].硅谷, 2011(15):1.DOI:10.3969/j.issn.1671-7597.2011.15.030.
[3] 段晓霞.基于MATLAB编码的PCM编译码实现[J].廊坊师范学院学报:自然科学版, 2019, 19(4):5.DOI:CNKI:SUN:HZJS.0.2019-04-009.
⛳️ 代码获取关注我
❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合