✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
作为高光谱遥感中最主要的研究和应用方向之一,异常检测(AD)旨在利用不同类型地物之间的光谱特征差异,在没有任何先验信息的情况下,定位特定场景内的目标。大多数传统的异常检测算法都是模型驱动的,并用特定的假设来描述高光谱数据,这无法应对真实场景中地物分布的复杂性,导致检测性能下降。为了克服传统算法的局限性,本文提出了一种新的基于树拓扑结构的异常检测(TTAD)方法,用于高光谱图像(HSI)。TTAD 跳出了基于特定假设的单一分析模式,而是直接解析 HSI 数据本身。它充分利用了异常数据点“少而异”的特点,即它们分布稀疏且远离高密度群体。在此基础上,将拓扑学这一成功处理多种数据挖掘任务的数学工具应用于异常检测,以确保充分提取地物的特征。首先,通过构建树型拓扑空间,实现 HSI 数据的重新分布,以提高异常与背景的可分离性。然后,利用该空间中的拓扑相关子集来评估数据集中每个样本的异常程度,并据此输出 HSI 的检测结果。抛弃传统的建模方式,而是着眼于挖掘 HSI 自身的数据特征,使 TTAD 能够更好地适应不同的复杂场景,并高精度地定位异常。在大量基准数据集上的实验结果表明,TTAD 可以在相当高的计算效率下,取得优异的检测结果。该方法表现出优越的综合性能,有望在实际应用中得到推广。
📣 部分代码
function anomaly_score = get_anomaly_score_Topological_Card( x,multiple_trees)
% to get the anomaly score for the testing pixel
% Input:
% x: testing pixel; multiple_trees: multiple constructed trees
% Output:
% anomaly score of the testing pixel
tree_use = multiple_trees{1};
tree_size = tree_use.subset_train_remain;
band_num = length(x);
tree_num = length(multiple_trees);
Topological_Card_sum = 0;
for i =1:tree_num
tree = multiple_trees{i};
path_length = 0;
while isfield(tree,'seg_value')
seg_value = tree.seg_value;
dimension_use = tree.dimension;
x_use = x(dimension_use);
path_length = path_length + 1;
if x_use <= seg_value
tree = tree.left_node;
else
tree = tree.right_node;
end
end
leaf_size = tree.original_seg_remain;
Topological_Card = leaf_size * path_length;
Topological_Card_sum = Topological_Card_sum + 1/Topological_Card;
end
Topological_Card_average = Topological_Card_sum/tree_num;
anomaly_score = Topological_Card_average;
end
⛳️ 运行结果
🔗 参考文献
code for paper:《Anomaly Detection Based on Tree Topology for Hyperspectral Images》
DOI: 10.1109/JSTARS.2022.3197642
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类