【图像检测】基于树拓扑JSTARS的高光谱图像异常检测附MATLAB代码

本文提出了一种新颖的TTAD方法,利用树拓扑结构在高光谱图像异常检测中跳出传统假设,直接解析数据,有效适应复杂场景并提升检测精度。实验证明,TTAD在保持高计算效率的同时,能显著改善异常检测性能,有潜力在实际应用中推广。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

🔥 内容介绍

作为高光谱遥感中最主要的研究和应用方向之一,异常检测(AD)旨在利用不同类型地物之间的光谱特征差异,在没有任何先验信息的情况下,定位特定场景内的目标。大多数传统的异常检测算法都是模型驱动的,并用特定的假设来描述高光谱数据,这无法应对真实场景中地物分布的复杂性,导致检测性能下降。为了克服传统算法的局限性,本文提出了一种新的基于树拓扑结构的异常检测(TTAD)方法,用于高光谱图像(HSI)。TTAD 跳出了基于特定假设的单一分析模式,而是直接解析 HSI 数据本身。它充分利用了异常数据点“少而异”的特点,即它们分布稀疏且远离高密度群体。在此基础上,将拓扑学这一成功处理多种数据挖掘任务的数学工具应用于异常检测,以确保充分提取地物的特征。首先,通过构建树型拓扑空间,实现 HSI 数据的重新分布,以提高异常与背景的可分离性。然后,利用该空间中的拓扑相关子集来评估数据集中每个样本的异常程度,并据此输出 HSI 的检测结果。抛弃传统的建模方式,而是着眼于挖掘 HSI 自身的数据特征,使 TTAD 能够更好地适应不同的复杂场景,并高精度地定位异常。在大量基准数据集上的实验结果表明,TTAD 可以在相当高的计算效率下,取得优异的检测结果。该方法表现出优越的综合性能,有望在实际应用中得到推广。

📣 部分代码

function  anomaly_score = get_anomaly_score_Topological_Card( x,multiple_trees)% to get the anomaly score for the testing pixel % Input:% x: testing pixel; multiple_trees: multiple constructed trees% Output:% anomaly score of the testing pixel tree_use = multiple_trees{1};tree_size = tree_use.subset_train_remain; band_num = length(x);   tree_num  = length(multiple_trees);  Topological_Card_sum = 0;for i =1:tree_num        tree = multiple_trees{i};    path_length = 0;    while isfield(tree,'seg_value')                            seg_value = tree.seg_value;        dimension_use = tree.dimension;        x_use = x(dimension_use);        path_length = path_length + 1;        if x_use <= seg_value            tree = tree.left_node;             else                  tree = tree.right_node;         end             end                          leaf_size = tree.original_seg_remain;       Topological_Card = leaf_size * path_length;      Topological_Card_sum = Topological_Card_sum + 1/Topological_Card;    endTopological_Card_average = Topological_Card_sum/tree_num;   anomaly_score = Topological_Card_average;  end

⛳️ 运行结果

🔗 参考文献

code for paper:《Anomaly Detection Based on Tree Topology for Hyperspectral Images》

DOI: 10.1109/JSTARS.2022.3197642

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值