【图像拼接】基于SURT特征匹配结合RANSAC滤除离群点图像拼接附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

物理应用             机器学习

🔥 内容介绍

图像拼接是一种计算机视觉技术,用于将两幅或多幅图像组合成一幅全景图像。图像拼接在许多应用中都有应用,例如全景摄影、无人机航拍和医疗成像。

在图像拼接中,一个关键的步骤是特征匹配。特征匹配是找到两幅图像中对应的特征点。这些特征点可以是角点、边缘点或其他视觉特征。

SURF特征匹配

SURF(加速鲁棒特征)是一种广泛使用的特征匹配算法。SURF算法通过检测图像中的Hessian矩阵来找到特征点。Hessian矩阵是一个图像梯度的二阶导数矩阵。

SURF算法计算每个特征点的方向和尺度。这使得SURF算法对图像旋转和尺度变化具有鲁棒性。

RANSAC滤除离群点

在特征匹配过程中,可能会出现一些离群点。离群点是错误匹配的特征点。这些离群点会影响图像拼接的准确性。

RANSAC(随机采样一致性)是一种用于滤除离群点的算法。RANSAC算法通过随机抽取特征点对来估计图像之间的变换参数。

RANSAC算法重复执行以下步骤:

  1. 从特征点对中随机抽取一个子集。

  2. 使用子集估计图像之间的变换参数。

  3. 计算所有特征点对的残差。

  4. 将残差小于阈值的特征点对标记为内点。

  5. 使用内点重新估计图像之间的变换参数。

图像拼接算法

基于SURF特征匹配和RANSAC滤除离群点的图像拼接算法如下:

  1. 使用SURF算法检测两幅图像中的特征点。

  2. 使用SURF算法匹配两幅图像中的特征点。

  3. 使用RANSAC算法滤除离群点。

  4. 使用内点估计图像之间的变换参数。

  5. 使用变换参数将两幅图像拼接成一幅全景图像。

📣 部分代码

function drawLine2(img1, img2, matchLoc1, matchLoc2, corrPtIdx)% 构建一幅图,将两幅原始图像简单排在一起显示,方便后续画出特征点匹配线img3 = appendimages(img1,img2);% 绘制RANSAC得到的精特征点匹配线figure('Position', [100 100 size(img3,2) size(img3,1)]);colormap('gray');imagesc(img3);hold on;disp = size(img1,2);for i = 1: size(matchLoc1,1)    % 若当前下标i在corrPtIdx中,代表当前特征匹配点对是RANSAC找到的精匹配点对    if ismember(i,corrPtIdx)        % 遍历整个匹配点对矩阵,对每对精匹配点两点构造一条直线        line([matchLoc1(i,1) matchLoc2(i,1)+disp],[matchLoc1(i,2) matchLoc2(i,2)], 'Color', 'g');        plot(matchLoc1(i,1),matchLoc1(i,2),'b*');        plot(matchLoc2(i,1)+disp,matchLoc2(i,2),'b*');    endendhold off;end

⛳️ 运行结果

实验结果

我们使用一组图像对测试了基于SURF特征匹配和RANSAC滤除离群点的图像拼接算法。实验结果表明,该算法可以准确地拼接图像,并且对图像旋转和尺度变化具有鲁棒性。

结论

基于SURF特征匹配和RANSAC滤除离群点的图像拼接算法是一种准确且鲁棒的图像拼接算法。该算法可以用于各种应用,例如全景摄影、无人机航拍和医疗成像。

🔗 参考文献

[1] 仲明.基于特征点精确配准的图像拼接技术的研究[D].华东师范大学,2015.

[2] 杨瑞阳.基于SURF算法的医学显微图像拼接研究[D].兰州大学,2014.

[3] 徐聪聪.基于SURF特征的水下图像拼接技术研究[D].中国海洋大学,2016.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值