✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
图像拼接是一种计算机视觉技术,用于将两幅或多幅图像组合成一幅全景图像。图像拼接在许多应用中都有应用,例如全景摄影、无人机航拍和医疗成像。
在图像拼接中,一个关键的步骤是特征匹配。特征匹配是找到两幅图像中对应的特征点。这些特征点可以是角点、边缘点或其他视觉特征。
SURF特征匹配
SURF(加速鲁棒特征)是一种广泛使用的特征匹配算法。SURF算法通过检测图像中的Hessian矩阵来找到特征点。Hessian矩阵是一个图像梯度的二阶导数矩阵。
SURF算法计算每个特征点的方向和尺度。这使得SURF算法对图像旋转和尺度变化具有鲁棒性。
RANSAC滤除离群点
在特征匹配过程中,可能会出现一些离群点。离群点是错误匹配的特征点。这些离群点会影响图像拼接的准确性。
RANSAC(随机采样一致性)是一种用于滤除离群点的算法。RANSAC算法通过随机抽取特征点对来估计图像之间的变换参数。
RANSAC算法重复执行以下步骤:
-
从特征点对中随机抽取一个子集。
-
使用子集估计图像之间的变换参数。
-
计算所有特征点对的残差。
-
将残差小于阈值的特征点对标记为内点。
-
使用内点重新估计图像之间的变换参数。
图像拼接算法
基于SURF特征匹配和RANSAC滤除离群点的图像拼接算法如下:
-
使用SURF算法检测两幅图像中的特征点。
-
使用SURF算法匹配两幅图像中的特征点。
-
使用RANSAC算法滤除离群点。
-
使用内点估计图像之间的变换参数。
-
使用变换参数将两幅图像拼接成一幅全景图像。
📣 部分代码
function drawLine2(img1, img2, matchLoc1, matchLoc2, corrPtIdx)
% 构建一幅图,将两幅原始图像简单排在一起显示,方便后续画出特征点匹配线
img3 = appendimages(img1,img2);
% 绘制RANSAC得到的精特征点匹配线
figure('Position', [100 100 size(img3,2) size(img3,1)]);
colormap('gray');
imagesc(img3);
hold on;
disp = size(img1,2);
for i = 1: size(matchLoc1,1)
% 若当前下标i在corrPtIdx中,代表当前特征匹配点对是RANSAC找到的精匹配点对
if ismember(i,corrPtIdx)
% 遍历整个匹配点对矩阵,对每对精匹配点两点构造一条直线
line([matchLoc1(i,1) matchLoc2(i,1)+disp],[matchLoc1(i,2) matchLoc2(i,2)], 'Color', 'g');
plot(matchLoc1(i,1),matchLoc1(i,2),'b*');
plot(matchLoc2(i,1)+disp,matchLoc2(i,2),'b*');
end
end
hold off;
end
⛳️ 运行结果
实验结果
我们使用一组图像对测试了基于SURF特征匹配和RANSAC滤除离群点的图像拼接算法。实验结果表明,该算法可以准确地拼接图像,并且对图像旋转和尺度变化具有鲁棒性。
结论
基于SURF特征匹配和RANSAC滤除离群点的图像拼接算法是一种准确且鲁棒的图像拼接算法。该算法可以用于各种应用,例如全景摄影、无人机航拍和医疗成像。
🔗 参考文献
[1] 仲明.基于特征点精确配准的图像拼接技术的研究[D].华东师范大学,2015.
[2] 杨瑞阳.基于SURF算法的医学显微图像拼接研究[D].兰州大学,2014.
[3] 徐聪聪.基于SURF特征的水下图像拼接技术研究[D].中国海洋大学,2016.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类