✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
本文提出了一种基于模糊模型参考自学习控制(FMRLC)的油轮控制系统。该系统采用模糊推理机制,将油轮的非线性动力学模型与参考模型相结合,实现对油轮航向和速度的精确控制。仿真结果表明,该系统具有良好的鲁棒性和自适应能力,能够有效应对油轮在各种工况下的航行控制问题。
引言
油轮作为海上运输的重要工具,其航行控制系统至关重要。传统的航行控制系统通常采用PID控制或自适应控制等方法,但这些方法在面对油轮复杂的非线性动力学特性时往往难以实现令人满意的控制效果。
模糊模型参考自学习控制(FMRLC)是一种新型的控制方法,它将模糊推理机制与模型参考自学习控制相结合,能够有效克服传统控制方法的局限性。FMRLC系统通过模糊推理机制建立油轮的非线性动力学模型,并利用参考模型生成期望输出,通过自学习算法调整模糊推理规则,实现对油轮航向和速度的精确控制。
FMRLC系统设计
FMRLC系统主要包括以下几个部分:
1. 模糊推理模块
模糊推理模块采用模糊推理机制建立油轮的非线性动力学模型。该模型将油轮的输入(如舵角、推进器转速)与输出(如航向、速度)之间的关系表示为模糊规则。
2. 参考模型
参考模型是一个理想的油轮动力学模型,它定义了油轮期望的航向和速度响应。
3. 自学习算法
自学习算法用于调整模糊推理规则,以使FMRLC系统的输出与参考模型的输出尽可能接近。常用的自学习算法包括梯度下降法、粒子群优化算法等。
仿真结果
为了验证FMRLC系统的性能,我们进行了仿真实验。仿真模型采用六自由度油轮动力学模型,考虑了油轮的非线性特性、环境干扰和传感器噪声。
仿真结果表明,FMRLC系统能够有效控制油轮的航向和速度,即使在面对风浪干扰和参数变化的情况下,也能保持良好的鲁棒性和自适应能力。与传统的PID控制系统相比,FMRLC系统具有更高的控制精度和更快的响应速度。
结论
本文提出的FMRLC系统为油轮航行控制提供了一种新的解决方案。该系统通过模糊推理机制和自学习算法,能够有效克服传统控制方法的局限性,实现对油轮航向和速度的精确控制。仿真结果表明,FMRLC系统具有良好的鲁棒性和自适应能力,能够有效应对油轮在各种工况下的航行控制问题。
📣 部分代码
% This next matrix specifies the rules of the fuzzy controller.
% The entries are the centers of the output membership functions.
% This choice represents just one guess on how to synthesize
% the fuzzy controller. Notice the regularity
% of the pattern of rules (basiscally we are using a type of
% saturated index adding). Notice that it is scaled by g0, the
% output scaling factor, since it is a normalized rule base.
% The rule base can be tuned to try to improve performance.
% The gain gf is a gain that can be set to one to initialize
% the rule base with an initial guess at the fuzzy controller to be
% synthesized or to zero to initialize the rule base to all zeros
% (i.e., all centers at zero so the rules all say to put zero
% into the plant).
gf=1;
rules=[1 1 1 1 1 1 0.8 0.6 0.3 0.1 0;
1 1 1 1 1 0.8 0.6 0.3 0.1 0 -0.1;
1 1 1 1 0.8 0.6 0.3 0.1 0 -0.1 -0.3;
1 1 1 0.8 0.6 0.3 0.1 0 -0.1 -0.3 -0.6;
1 1 0.8 0.6 0.3 0.1 0 -0.1 -0.3 -0.6 -0.8;
1 0.8 0.6 0.3 0.1 0 -0.1 -0.3 -0.6 -0.8 -1;
0.8 0.6 0.3 0.1 0 -0.1 -0.3 -0.6 -0.8 -1 -1;
0.6 0.3 0.1 0 -0.1 -0.3 -0.6 -0.8 -1 -1 -1;
0.3 0.1 0 -0.1 -0.3 -0.6 -0.8 -1 -1 -1 -1;
0.1 0 -0.1 -0.3 -0.6 -0.8 -1 -1 -1 -1 -1;
0 -0.1 -0.3 -0.6 -0.8 -1 -1 -1 -1 -1 -1]*gf*g0;
% Next, we define some parameters for the fuzzy inverse model
gye=2/pi;,gyc=10; % Scaling gains for the error and change in error for
% the inverse model
% These are tuned to improve the performance of the FMRLC
gp=0.4;
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类