模糊模型参考自学习控制(FMRLC)的油轮控制系统附matlab代码

本文介绍了一种新型的油轮控制系统,利用模糊模型参考自学习控制(FMRLC)结合模糊推理和自学习,实现对油轮航向和速度的精确控制。仿真结果展示了FMRLC的优越性能,包括鲁棒性和自适应性,对比传统方法有显著提升。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

本文提出了一种基于模糊模型参考自学习控制(FMRLC)的油轮控制系统。该系统采用模糊推理机制,将油轮的非线性动力学模型与参考模型相结合,实现对油轮航向和速度的精确控制。仿真结果表明,该系统具有良好的鲁棒性和自适应能力,能够有效应对油轮在各种工况下的航行控制问题。

引言

油轮作为海上运输的重要工具,其航行控制系统至关重要。传统的航行控制系统通常采用PID控制或自适应控制等方法,但这些方法在面对油轮复杂的非线性动力学特性时往往难以实现令人满意的控制效果。

模糊模型参考自学习控制(FMRLC)是一种新型的控制方法,它将模糊推理机制与模型参考自学习控制相结合,能够有效克服传统控制方法的局限性。FMRLC系统通过模糊推理机制建立油轮的非线性动力学模型,并利用参考模型生成期望输出,通过自学习算法调整模糊推理规则,实现对油轮航向和速度的精确控制。

FMRLC系统设计

FMRLC系统主要包括以下几个部分:

1. 模糊推理模块

模糊推理模块采用模糊推理机制建立油轮的非线性动力学模型。该模型将油轮的输入(如舵角、推进器转速)与输出(如航向、速度)之间的关系表示为模糊规则。

2. 参考模型

参考模型是一个理想的油轮动力学模型,它定义了油轮期望的航向和速度响应。

3. 自学习算法

自学习算法用于调整模糊推理规则,以使FMRLC系统的输出与参考模型的输出尽可能接近。常用的自学习算法包括梯度下降法、粒子群优化算法等。

仿真结果

为了验证FMRLC系统的性能,我们进行了仿真实验。仿真模型采用六自由度油轮动力学模型,考虑了油轮的非线性特性、环境干扰和传感器噪声。

仿真结果表明,FMRLC系统能够有效控制油轮的航向和速度,即使在面对风浪干扰和参数变化的情况下,也能保持良好的鲁棒性和自适应能力。与传统的PID控制系统相比,FMRLC系统具有更高的控制精度和更快的响应速度。

结论

本文提出的FMRLC系统为油轮航行控制提供了一种新的解决方案。该系统通过模糊推理机制和自学习算法,能够有效克服传统控制方法的局限性,实现对油轮航向和速度的精确控制。仿真结果表明,FMRLC系统具有良好的鲁棒性和自适应能力,能够有效应对油轮在各种工况下的航行控制问题。

📣 部分代码

% This next matrix specifies the rules of the fuzzy controller.  % The entries are the centers of the output membership functions.  % This choice represents just one guess on how to synthesize % the fuzzy controller.  Notice the regularity % of the pattern of rules (basiscally we are using a type of % saturated index adding).  Notice that it is scaled by g0, the % output scaling factor, since it is a normalized rule base.% The rule base can be tuned to try to improve performance.% The gain gf is a gain that can be set to one to initialize % the rule base with an initial guess at the fuzzy controller to be% synthesized or to zero to initialize the rule base to all zeros% (i.e., all centers at zero so the rules all say to put zero% into the plant).gf=1;rules=[1    1     1     1    1     1    0.8   0.6   0.3    0.1     0;       1    1     1     1    1   0.8    0.6   0.3   0.1    0     -0.1;     1    1     1     1   0.8  0.6    0.3   0.1   0     -0.1   -0.3;     1    1     1   0.8   0.6  0.3    0.1    0    -0.1   -0.3  -0.6;     1    1   0.8   0.6   0.3  0.1     0   -0.1   -0.3   -0.6  -0.8;     1  0.8   0.6   0.3   0.1   0    -0.1  -0.3   -0.6   -0.8   -1;   0.8  0.6   0.3   0.1    0   -0.1  -0.3  -0.6   -0.8   -1     -1;   0.6  0.3   0.1    0   -0.1  -0.3  -0.6  -0.8   -1     -1     -1;   0.3  0.1    0   -0.1  -0.3  -0.6  -0.8   -1    -1     -1     -1;   0.1   0   -0.1  -0.3  -0.6  -0.8   -1    -1    -1     -1     -1;     0 -0.1  -0.3  -0.6  -0.8  -1     -1    -1    -1     -1     -1]*gf*g0;% Next, we define some parameters for the fuzzy inverse modelgye=2/pi;,gyc=10;    % Scaling gains for the error and change in error for           % the inverse model          % These are tuned to improve the performance of the FMRLCgp=0.4;

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值