✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
引言 天线阵列是无线通信系统中广泛应用的关键技术,它通过组合多个辐射元件来形成所需的波束图。波束图描述了天线阵列在不同方向上的辐射强度分布,对于系统性能至关重要。切比雪夫综合法是一种常用的天线阵列波束图设计方法,它可以产生具有特定形状和旁瓣电平的波束图。
切比雪夫多项式 切比雪夫综合法基于切比雪夫多项式,它是一类正交多项式,具有以下形式:
T_n(x) = cos(n * arccos(x))
其中,n 是多项式的阶数,x 是介于 -1 和 1 之间的自变量。
波束图设计 使用切比雪夫综合法设计天线阵列波束图的过程如下:
-
**确定波束图形状:**首先,需要确定所需的波束图形状,例如主瓣宽度、旁瓣电平和旁瓣衰减率。
-
**选择切比雪夫阶数:**根据所需的波束图形状,选择合适的切比雪夫阶数 n。
-
**计算阵列权重:**使用切比雪夫多项式和波束图形状参数,计算天线阵列中每个辐射元件的权重。
-
**阵列合成:**根据计算出的权重,合成天线阵列,形成所需的波束图。
优点 切比雪夫综合法具有以下优点:
-
**灵活的波束图形状:**可以设计具有各种形状的波束图,包括窄主瓣、低旁瓣电平和快速旁瓣衰减。
-
**数学基础:**该方法基于数学原理,具有良好的理论基础,可以准确预测波束图性能。
-
**易于实现:**计算阵列权重和合成天线阵列的过程相对简单,易于实现。
缺点 切比雪夫综合法也有一些缺点:
-
**旁瓣电平:**旁瓣电平可能高于其他波束图设计方法。
-
**计算复杂度:**对于高阶切比雪夫多项式,计算阵列权重可能会变得复杂。
-
**灵活性:**波束图形状受切比雪夫阶数和参数的限制,可能无法满足所有要求。
应用 切比雪夫综合法广泛应用于各种无线通信系统中,包括雷达、卫星通信和移动通信。它特别适用于需要精确波束图控制和低旁瓣电平的应用。
结论 切比雪夫综合法是一种有效的技术,用于设计具有特定形状和旁瓣电平的天线阵列波束图。它具有灵活的波束图形状、数学基础和易于实现的优点。尽管存在一些缺点,但切比雪夫综合法仍然是天线阵列设计中常用的方法,在各种无线通信系统中发挥着重要作用。
📣 部分代码
%切比雪夫综合法
clear
clc
N = 13; %单元数N=13
if rem(N,2)==0 %求和项数M(奇偶不同)
M = N/2;
else
M = (N-1)/2+1;
end
RdB = 26; % 主副瓣比(dB值)
lamuda = 10; % 波长
d = 0.6*lamuda; % 单元间距
theta0 = 60/180*pi; % 扫描角度,相对于阵列排布方向的夹角
A = [1,0,0,0,0,0,0,0,0,0,0,0,0,0; % chebyshev多项式Tn(x) = cos(nu)= f(x)系数矩阵A
0,1,0,0,0,0,0,0,0,0,0,0,0,0; % 系数矩阵A每一行表示n,从n = 0开始
-1,0,2,0,0,0,0,0,0,0,0,0,0,0; % 列表示x的幂次方,从0次方开始
0,-3,0,4,0,0,0,0,0,0,0,0,0,0;
1,0,-8,0,8,0,0,0,0,0,0,0,0,0;
0,5,0,-20,0,16,0,0,0,0,0,0,0,0;
-1,0,18,0,-48,0,32,0,0,0,0,0,0,0;
0,-7,0,56,0,-112,0,64,0,0,0,0,0,0;
1,0,-32,0,160,0,-256,0,128,0,0,0,0,0;
0,9,0,-120,0,432,0,-576,0,256,0,0,0,0;
-1,0,50,0,-400,0,1120,0,-1280,0,512,0,0,0;
0,-11,0,220,0,-1232,0,2816,0,-2816,0,1024,0,0;
1,0,-72,0,840,0,-3584,0,6912,0,-6144,0,2048,0;
0,13,0,-364,0,2912,0,-9984,0,16640,0,-13312,0,4096];
⛳️ 运行结果
🔗 参考文献
[1]高杰.考虑互耦的切比雪夫线阵天线波束形成[J].电子测试, 2009(4):5.DOI:10.3969/j.issn.1000-8519.2009.04.002.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类