【天线】基于matlab模拟切比雪夫综合法天线阵列波束图

这篇文章详细介绍了切比雪夫综合法在天线阵列波束图设计中的应用,包括确定波束形状、选择阶数、计算权重和阵列合成。文中探讨了这种方法的优点如灵活的波形控制和理论基础,同时也提到了其局限性,如旁瓣电平和计算复杂性。该技术在无线通信系统中尤其适用于需要精确控制的场景。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

引言 天线阵列是无线通信系统中广泛应用的关键技术,它通过组合多个辐射元件来形成所需的波束图。波束图描述了天线阵列在不同方向上的辐射强度分布,对于系统性能至关重要。切比雪夫综合法是一种常用的天线阵列波束图设计方法,它可以产生具有特定形状和旁瓣电平的波束图。

切比雪夫多项式 切比雪夫综合法基于切比雪夫多项式,它是一类正交多项式,具有以下形式:

T_n(x) = cos(n * arccos(x))

其中,n 是多项式的阶数,x 是介于 -1 和 1 之间的自变量。

波束图设计 使用切比雪夫综合法设计天线阵列波束图的过程如下:

  1. **确定波束图形状:**首先,需要确定所需的波束图形状,例如主瓣宽度、旁瓣电平和旁瓣衰减率。

  2. **选择切比雪夫阶数:**根据所需的波束图形状,选择合适的切比雪夫阶数 n。

  3. **计算阵列权重:**使用切比雪夫多项式和波束图形状参数,计算天线阵列中每个辐射元件的权重。

  4. **阵列合成:**根据计算出的权重,合成天线阵列,形成所需的波束图。

优点 切比雪夫综合法具有以下优点:

  • **灵活的波束图形状:**可以设计具有各种形状的波束图,包括窄主瓣、低旁瓣电平和快速旁瓣衰减。

  • **数学基础:**该方法基于数学原理,具有良好的理论基础,可以准确预测波束图性能。

  • **易于实现:**计算阵列权重和合成天线阵列的过程相对简单,易于实现。

缺点 切比雪夫综合法也有一些缺点:

  • **旁瓣电平:**旁瓣电平可能高于其他波束图设计方法。

  • **计算复杂度:**对于高阶切比雪夫多项式,计算阵列权重可能会变得复杂。

  • **灵活性:**波束图形状受切比雪夫阶数和参数的限制,可能无法满足所有要求。

应用 切比雪夫综合法广泛应用于各种无线通信系统中,包括雷达、卫星通信和移动通信。它特别适用于需要精确波束图控制和低旁瓣电平的应用。

结论 切比雪夫综合法是一种有效的技术,用于设计具有特定形状和旁瓣电平的天线阵列波束图。它具有灵活的波束图形状、数学基础和易于实现的优点。尽管存在一些缺点,但切比雪夫综合法仍然是天线阵列设计中常用的方法,在各种无线通信系统中发挥着重要作用。

📣 部分代码

%切比雪夫综合法clearclcN = 13; %单元数N=13if rem(N,2)==0 %求和项数M(奇偶不同)    M = N/2;else    M = (N-1)/2+1;endRdB = 26; % 主副瓣比(dB值)lamuda = 10; % 波长d = 0.6*lamuda; % 单元间距theta0 = 60/180*pi; % 扫描角度,相对于阵列排布方向的夹角A = [1,0,0,0,0,0,0,0,0,0,0,0,0,0; % chebyshev多项式Tn(x) = cos(nu)= f(x)系数矩阵A    0,1,0,0,0,0,0,0,0,0,0,0,0,0; % 系数矩阵A每一行表示n,从n = 0开始    -1,0,2,0,0,0,0,0,0,0,0,0,0,0; % 列表示x的幂次方,从0次方开始    0,-3,0,4,0,0,0,0,0,0,0,0,0,0;    1,0,-8,0,8,0,0,0,0,0,0,0,0,0;    0,5,0,-20,0,16,0,0,0,0,0,0,0,0;    -1,0,18,0,-48,0,32,0,0,0,0,0,0,0;    0,-7,0,56,0,-112,0,64,0,0,0,0,0,0;    1,0,-32,0,160,0,-256,0,128,0,0,0,0,0;    0,9,0,-120,0,432,0,-576,0,256,0,0,0,0;    -1,0,50,0,-400,0,1120,0,-1280,0,512,0,0,0;    0,-11,0,220,0,-1232,0,2816,0,-2816,0,1024,0,0;    1,0,-72,0,840,0,-3584,0,6912,0,-6144,0,2048,0;    0,13,0,-364,0,2912,0,-9984,0,16640,0,-13312,0,4096];

⛳️ 运行结果

🔗 参考文献

​[1]高杰.考虑互耦的切比雪夫线阵天线波束形成[J].电子测试, 2009(4):5.DOI:10.3969/j.issn.1000-8519.2009.04.002.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值