【天线方向图】基于matlab模拟线阵天线方向图

本文详细阐述了线阵天线方向图的构成要素、不同类型、设计原则及其在雷达、通信和遥感等领域的应用。重点介绍了Matlab在天线方向图仿真中的应用,以及测量和仿真的方法。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

线阵天线是一种广泛用于雷达、通信和遥感等应用中的基本天线类型。线阵天线由一系列沿直线排列的辐射元件组成,其方向图是描述天线辐射能量在空间分布的关键特征。本文将深入探讨线阵天线方向图的理论和应用。

理论基础

线阵天线方向图由以下因素决定:

  • **辐射元件的个数和间距:**元件的个数和间距决定了阵列因子,它描述了阵列中各个元件辐射信号的相位和幅度关系。

  • **激发相位:**馈送到每个辐射元件的信号的相位差会影响方向图的形状和指向。

  • **阵列长度:**阵列长度与波长之比决定了方向图的主瓣宽度和旁瓣电平。

方向图类型

线阵天线方向图可以分为以下几种类型:

  • **主瓣:**天线辐射能量最集中的方向。

  • **旁瓣:**主瓣之外的次要辐射方向。

  • **零点:**天线辐射能量为零的方向。

  • **波束宽度:**主瓣在给定功率衰减水平下的角度范围。

方向图设计

线阵天线方向图的设计需要考虑以下因素:

  • **覆盖范围:**天线需要覆盖的区域。

  • **波束形状:**所需的波束形状和指向。

  • **旁瓣抑制:**旁瓣电平的允许值。

  • **阵列尺寸:**可用空间和成本限制。

应用

线阵天线方向图在各种应用中发挥着至关重要的作用,包括:

  • **雷达:**检测和跟踪目标。

  • **通信:**定向传输和接收信号。

  • **遥感:**测量地球表面和大气中的参数。

  • **电子战:**干扰和欺骗敌方系统。

测量和仿真

线阵天线方向图可以通过以下方法测量和仿真:

  • **远场测量:**在远场区测量天线辐射的功率密度。

  • **近场测量:**在近场区测量天线辐射的电场或磁场。

  • **仿真软件:**使用计算机仿真软件预测天线方向图。

结论

线阵天线方向图是描述天线辐射性能的关键特征。通过理解方向图的理论基础和设计原则,工程师可以优化天线以满足特定应用的需求。线阵天线方向图在现代通信、雷达和遥感系统中发挥着至关重要的作用。

📣 部分代码

clear;clf;clc;close all;global generation_size pop_size sense_node sense_range sensor_selected target_coveraged target_x target_y node_x node_y distance grid_range_x grid_range_y spansense_range=17.675;sense_node=400;packet_bit=2000;generation_size=20;pop_size=50;grid_range_x=200; grid_range_y=200;span=0.04;%target span% sink_x=grid_range_x*span/2;% sink_y=-grid_range_y*span;sink_x=50;sink_y=200; %sink_y=200%grid_range: to determine the field size, rand_rang: target numbersensor_selected=zeros(pop_size,sense_node,generation_size+1);% rand_range_x=10;% rand_range_y=10;target_x=zeros(grid_range_y*span,grid_range_x*span);target_y=zeros(grid_range_y*span,grid_range_x*span);% target_x=zeros(rand_range_y,rand_range_x); %//% target_y=zeros(rand_range_y,rand_range_x); %//% node_x=zeros(sense_node); %//% node_y=zeros(sense_node); %//% load data1;% distance=zeros(rand_range_y,rand_range_x,sense_node);dist_node_target=zeros(grid_range_y*span,grid_range_x*span,sense_node);% for k=1:sense_node    %randomly produce %//%        node_x(k)=fix(rand*grid_range_x*span);%        node_y(k)=fix(rand*grid_range_y*span);% endm=0;n=0;for k=1:400    node_x(k)=m;    node_y(k)=n;    if m>=95        m=0;        n=n+5;    else        m=m+5;    endend% while 1==1 ticclf;for i=1:grid_range_y*span   % determine the target coordinates    for j=1:grid_range_x*span        target_x(i,j)=6.25+(j-1)*12.5;        target_y(i,j)=6.25+(i-1)*12.5;    endend% for i=1:rand_range_y    %randomly determine//%     for j=1:rand_range_x%             target_x(i,j)=fix(rand*grid_range_x*span);%             target_y(i,j)=fix(rand*grid_range_y*span);%     end% endfor i=1:grid_range_x*span %% plot the targets        axis image;        hold on;        subplot(1,2,2),plot(target_x(i,:),target_y(i,:),'*');         hold on;                subplot(1,2,1),plot(target_x(i,:),target_y(i,:),'*'); endfor k=1:sense_node    for i=1:grid_range_y*span% pause;% end

⛳️ 运行结果

🔗 参考文献

[1]张承畅,余洒,罗元,等.基于Matlab的阵列天线方向图仿真[J].实验技术与管理, 2020, 37(8):6.DOI:10.16791/j.cnki.sjg.2020.08.014.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值