✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
线阵天线是一种广泛用于雷达、通信和遥感等应用中的基本天线类型。线阵天线由一系列沿直线排列的辐射元件组成,其方向图是描述天线辐射能量在空间分布的关键特征。本文将深入探讨线阵天线方向图的理论和应用。
理论基础
线阵天线方向图由以下因素决定:
-
**辐射元件的个数和间距:**元件的个数和间距决定了阵列因子,它描述了阵列中各个元件辐射信号的相位和幅度关系。
-
**激发相位:**馈送到每个辐射元件的信号的相位差会影响方向图的形状和指向。
-
**阵列长度:**阵列长度与波长之比决定了方向图的主瓣宽度和旁瓣电平。
方向图类型
线阵天线方向图可以分为以下几种类型:
-
**主瓣:**天线辐射能量最集中的方向。
-
**旁瓣:**主瓣之外的次要辐射方向。
-
**零点:**天线辐射能量为零的方向。
-
**波束宽度:**主瓣在给定功率衰减水平下的角度范围。
方向图设计
线阵天线方向图的设计需要考虑以下因素:
-
**覆盖范围:**天线需要覆盖的区域。
-
**波束形状:**所需的波束形状和指向。
-
**旁瓣抑制:**旁瓣电平的允许值。
-
**阵列尺寸:**可用空间和成本限制。
应用
线阵天线方向图在各种应用中发挥着至关重要的作用,包括:
-
**雷达:**检测和跟踪目标。
-
**通信:**定向传输和接收信号。
-
**遥感:**测量地球表面和大气中的参数。
-
**电子战:**干扰和欺骗敌方系统。
测量和仿真
线阵天线方向图可以通过以下方法测量和仿真:
-
**远场测量:**在远场区测量天线辐射的功率密度。
-
**近场测量:**在近场区测量天线辐射的电场或磁场。
-
**仿真软件:**使用计算机仿真软件预测天线方向图。
结论
线阵天线方向图是描述天线辐射性能的关键特征。通过理解方向图的理论基础和设计原则,工程师可以优化天线以满足特定应用的需求。线阵天线方向图在现代通信、雷达和遥感系统中发挥着至关重要的作用。
📣 部分代码
clear;
clf;
clc;
close all;
global generation_size pop_size sense_node sense_range sensor_selected target_coveraged target_x target_y node_x node_y distance grid_range_x grid_range_y span
sense_range=17.675;
sense_node=400;
packet_bit=2000;
generation_size=20;
pop_size=50;
grid_range_x=200;
grid_range_y=200;
span=0.04;%target span
% sink_x=grid_range_x*span/2;
% sink_y=-grid_range_y*span;
sink_x=50;
sink_y=200; %sink_y=200
%grid_range: to determine the field size, rand_rang: target number
sensor_selected=zeros(pop_size,sense_node,generation_size+1);
% rand_range_x=10;
% rand_range_y=10;
target_x=zeros(grid_range_y*span,grid_range_x*span);
target_y=zeros(grid_range_y*span,grid_range_x*span);
% target_x=zeros(rand_range_y,rand_range_x); %//
% target_y=zeros(rand_range_y,rand_range_x); %//
% node_x=zeros(sense_node); %//
% node_y=zeros(sense_node); %//
% load data1;
% distance=zeros(rand_range_y,rand_range_x,sense_node);
dist_node_target=zeros(grid_range_y*span,grid_range_x*span,sense_node);
% for k=1:sense_node %randomly produce %//
% node_x(k)=fix(rand*grid_range_x*span);
% node_y(k)=fix(rand*grid_range_y*span);
% end
m=0;
n=0;
for k=1:400
node_x(k)=m;
node_y(k)=n;
if m>=95
m=0;
n=n+5;
else
m=m+5;
end
end
% while 1==1
tic
clf;
for i=1:grid_range_y*span % determine the target coordinates
for j=1:grid_range_x*span
target_x(i,j)=6.25+(j-1)*12.5;
target_y(i,j)=6.25+(i-1)*12.5;
end
end
% for i=1:rand_range_y %randomly determine//
% for j=1:rand_range_x
% target_x(i,j)=fix(rand*grid_range_x*span);
% target_y(i,j)=fix(rand*grid_range_y*span);
% end
% end
for i=1:grid_range_x*span %% plot the targets
axis image;
hold on;
subplot(1,2,2),plot(target_x(i,:),target_y(i,:),'*');
hold on;
subplot(1,2,1),plot(target_x(i,:),target_y(i,:),'*');
end
for k=1:sense_node
for i=1:grid_range_y*span
% pause;
% end
⛳️ 运行结果
🔗 参考文献
[1]张承畅,余洒,罗元,等.基于Matlab的阵列天线方向图仿真[J].实验技术与管理, 2020, 37(8):6.DOI:10.16791/j.cnki.sjg.2020.08.014.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类