✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
1. 概述
可见光通信(Visible Light Communication,VLC)是一种利用可见光频谱进行无线数据传输的技术,近年来受到越来越多的关注。VLC 具有高带宽、低功耗、安全性高等优点,在室内通信、车联网、医疗保健等领域有着广阔的应用前景。
OFDM(Orthogonal Frequency Division Multiplexing)是一种多载波调制技术,可以有效地克服多径效应和信道衰落,提高通信系统的性能。DCO-OFDM(Direct Current-biased Optical Orthogonal Frequency Division Multiplexing)是一种特殊的 OFDM 技术,它通过在每个子载波上叠加直流偏置来实现信号的传输。
在 AWGN(Additive White Gaussian Noise)信道下,DCO-OFDM 可见光通信系统可以有效地提高系统的误码率性能。本文将对基于 QPSK 调制的 AWGN 信道 DCO-OFDM 可见光通信系统进行详细的分析,并通过仿真验证系统的性能。
2. 系统模型
其中,数据源产生待传输的数据信息,经过串并转换后送入 QPSK 调制器。QPSK 调制器将数据信息调制到四个正交的子载波上,并叠加直流偏置。调制后的信号经过 IFFT 变换后得到时域信号,然后经过数模转换器 (DAC) 和光电二极管 (LED) 转换为光信号进行传输。
在 AWGN 信道下,光信号会受到噪声的干扰。接收端的光电二极管将光信号转换为电信号,经过模数转换器 (ADC) 和 FFT 变换后得到频域信号。频域信号经过 QPSK 解调器解调后得到数据信息,最后经过并串转换后恢复为原始数据信息。
3.本文分析了基于 QPSK 调制的 AWGN 信道 DCO-OFDM 可见光通信系统,并通过仿真验证了系统的性能。仿真结果表明,该系统可以有效地提高系统的误码率性能,在可见光通信领域具有广阔的应用前景。
⛳️ 运行结果
🔗 参考文献
[1] 程风全.DCO-OFDM可见光通信系统自适应传输与系统方案改进[D].东南大学,2017.DOI:10.7666/d.Y3256135.
[2] 孙达.基于DCO-OFDM的可见光通信系统帧检测和信道估计方法研究[J].[2024-04-28].
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类