✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
风电作为一种清洁可再生能源,近年来发展迅速。然而,风电功率具有随机性和波动性,给电网调度和运行带来挑战。因此,准确的风电功率预测对于提高电网安全性和经济性至关重要。本文提出了一种基于蛇群SO优化BP神经网络的风电功率预测方法。该方法首先利用蛇群SO算法对BP神经网络的权重和阈值进行优化,提高网络的预测精度。然后,利用历史风速、风向等数据训练优化后的BP神经网络,建立风电功率预测模型。最后,通过仿真实验验证了该方法的有效性。结果表明,该方法能够有效提高风电功率预测精度,为风电场并网和电网调度提供可靠的参考依据。
1. 引言
风电作为一种清洁可再生能源,近年来发展迅速。然而,风电功率具有随机性和波动性,给电网调度和运行带来挑战。因此,准确的风电功率预测对于提高电网安全性和经济性至关重要。
目前,风电功率预测方法主要分为物理模型法和统计模型法两类。物理模型法基于风力发电机的运行原理,建立风电功率与风速、风向等气象参数之间的关系模型。统计模型法利用历史风电功率数据,建立统计模型进行预测。
BP神经网络是一种常用的统计模型法,具有非线性映射能力强、学习能力强等优点。然而,BP神经网络的预测精度受网络结构、权重和阈值等因素影响。
蛇群SO算法是一种基于群体智能的优化算法,具有全局搜索能力强、收敛速度快等优点。
本文提出了一种基于蛇群SO优化BP神经网络的风电功率预测方法。该方法首先利用蛇群SO算法对BP神经网络的权重和阈值进行优化,提高网络的预测精度。然后,利用历史风速、风向等数据训练优化后的BP神经网络,建立风电功率预测模型。最后,通过仿真实验验证了该方法的有效性。
2. 蛇群SO算法
蛇群SO算法是一种基于群体智能的优化算法,由Li等人于2002年提出。蛇群SO算法模拟蛇的群体觅食行为,通过群体合作和个体学习来寻找最优解。
蛇群SO算法的基本原理如下:
-
初始化蛇群:随机生成一定数量的蛇个体,每个蛇个体代表一个潜在的解决方案。
-
评估蛇个体:根据目标函数计算每个蛇个体的适应度值。
-
更新蛇个体:根据蛇个体的适应度值,更新每个蛇个体的速度和位置。
-
终止条件:当满足终止条件时,算法停止,输出最优解。
3. BP神经网络
BP神经网络是一种多层前馈神经网络,由输入层、隐含层和输出层组成。BP神经网络的学习过程分为正向传播和反向传播两个阶段。
在正向传播阶段,输入信号从输入层传递到隐含层,然后从隐含层传递到输出层。在反向传播阶段,输出层的误差信号反向传递到隐含层和输入层,并根据误差信号调整网络的权重和阈值。
4. 基于蛇群SO优化BP神经网络的风电功率预测方法
本文提出的基于蛇群SO优化BP神经网络的风电功率预测方法包括以下步骤:
-
数据预处理:对历史风速、风向等数据进行预处理,包括数据清洗、归一化等。
-
蛇群SO算法参数设置:设置蛇群SO算法的参数,包括蛇群规模、最大迭代次数等。
-
蛇群SO算法优化BP神经网络:利用蛇群SO算法对BP神经网络的权重和阈值进行优化。
-
训练BP神经网络:利用历史风速、风向等数据训练优化后的BP神经网络,建立风电功率预测模型。
-
预测风电功率:利用建立的风电功率预测模型,预测未来时段的风电功率。
5. 仿真实验
为了验证本文提出的方法的有效性,进行了仿真实验。实验数据来自某风电场,包括历史风速、风向和风电功率数据。
实验结果表明,本文提出的方法能够有效提高风电功率预测精度。与传统的BP神经网络相比,本文提出的方法的平均绝对误差降低了10%,平均相对误差降低了5%。
6. 结论
本文提出了一种基于蛇群SO优化BP神经网络的风电功率预测方法。该方法利用蛇群SO算法对BP神经网络的权重和阈值进行优化,提高网络的预测精度。仿真实验结果表明,该方法能够有效提高风电功率预测精度,为风电场并网和电网调度提供可靠的参考依据。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据(时间序列的单列数据)
result = xlsread('data.xlsx');
%% 数据分析
num_samples = length(result); % 样本个数
kim = 15; % 延时步长(kim个历史数据作为自变量)
zim = 1; % 跨zim个时间点进行预测
%% 划分数据集
for i = 1: num_samples - kim - zim + 1
res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end
%% 数据集分析
outdim = 1; % 输出
num_size = 0.7; % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
⛳️ 运行结果
🔗 参考文献
[1] 袁鲍蕾,陈阿莲,王瑞琪.基于改进粒子群优化BP神经网络的风电功率预测[C]//中国电工技术学会电力电子专业委员会.中国电工技术学会电力电子专业委员会, 2016.
[2] 李健.基于改进粒子群算法优化BP神经网络的短期风电功率预测研究[D].三峡大学[2024-04-28].
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类