【配电网重构】基于粒子群算法实现配电网重构附Matlab代码

本文探讨了粒子群算法在配电网重构中的原理、步骤,展示了其如何通过模拟鸟群觅食行为寻找最优解。文章分析了算法的优点,如效率高、鲁棒性强和易于实现,并举例说明了其在实际项目中的应用和效果。同时,也讨论了算法的优缺点。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

配电网重构是指在满足安全运行和经济效益的前提下,对配电网进行优化调整,以提高供电可靠性和经济效益。粒子群算法是一种高效的智能优化算法,近年来被广泛应用于配电网重构领域。本文将探讨基于粒子群算法实现配电网重构的原理、步骤和应用,并分析其优缺点。

1. 引言

随着社会经济的快速发展,对电力需求不断增长,配电网面临着越来越多的挑战,如设备老化、负荷增长、故障率上升等。为了提高配电网的供电可靠性和经济效益,需要进行配电网重构。

配电网重构是一个复杂的多目标优化问题,需要考虑多个因素,如安全运行、经济效益、供电可靠性等。传统的优化方法,如线性规划、动态规划等,难以有效解决配电网重构问题。粒子群算法是一种高效的智能优化算法,近年来被广泛应用于配电网重构领域。

2. 粒子群算法

粒子群算法是一种基于群体智能的优化算法,其原理是模拟鸟群觅食的行为。在粒子群算法中,每个粒子代表一个可能的解决方案,粒子群在解空间中进行搜索,并不断更新自己的位置,以找到最优解。

粒子群算法具有以下优点:

  • 简单易于实现

  • 鲁棒性强

  • 效率高

3. 基于粒子群算法实现配电网重构

基于粒子群算法实现配电网重构的步骤如下:

  1. 建立配电网模型:根据实际配电网情况,建立配电网模型,包括节点、线路、负荷等信息。

  2. 定义目标函数:根据配电网重构的目标,定义目标函数,例如最小化线路损耗、提高供电可靠性等。

  3. 设计粒子群算法:设计粒子群算法的参数,例如粒子数量、迭代次数等。

  4. 运行粒子群算法:运行粒子群算法,并根据目标函数进行迭代,直到找到最优解。

  5. 分析结果:分析粒子群算法的优化结果,并进行验证。

4. 应用

粒子群算法已成功应用于多个配电网重构项目,并取得了良好的效果。例如,在某配电网重构项目中,应用粒子群算法优化线路配置,使线路损耗降低了10%,供电可靠性提高了5%。

5. 优缺点

粒子群算法在配电网重构领域具有以下优点:

  • 效率高:粒子群算法能够快速找到最优解。

  • 鲁棒性强:粒子群算法对参数设置不敏感,具有较强的鲁棒性。

  • 易于实现:粒子群算法易

📣 部分代码

function Sbus = makeSbus(baseMVA, bus, gen)%MAKESBUS   Builds the vector of complex bus power injections.%   SBUS = MAKESBUS(BASEMVA, BUS, GEN) returns the vector of complex bus%   power injections, that is, generation minus load. Power is expressed%   in per unit.%%   See also MAKEYBUS.%   MATPOWER%   $Id: makeSbus.m,v 1.13 2010/04/26 19:45:25 ray Exp $%   by Ray Zimmerman, PSERC Cornell%   Copyright (c) 1996-2010 by Power System Engineering Research Center (PSERC)%%   This file is part of MATPOWER.%   See http://www.pserc.cornell.edu/matpower/ for more info.%%   MATPOWER is free software: you can redistribute it and/or modify%   it under the terms of the GNU General Public License as published%   by the Free Software Foundation, either version 3 of the License,%   or (at your option) any later version.%%   MATPOWER is distributed in the hope that it will be useful,%   but WITHOUT ANY WARRANTY; without even the implied warranty of%   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the%   GNU General Public License for more details.%%   You should have received a copy of the GNU General Public License%   along with MATPOWER. If not, see <http://www.gnu.org/licenses/>.%%   Additional permission under GNU GPL version 3 section 7%%   If you modify MATPOWER, or any covered work, to interface with%   other modules (such as MATLAB code and MEX-files) available in a%   MATLAB(R) or comparable environment containing parts covered%   under other licensing terms, the licensors of MATPOWER grant%   you additional permission to convey the resulting work.%% define named indices into bus, gen matrices[PQ, PV, REF, NONE, BUS_I, BUS_TYPE, PD, QD, GS, BS, BUS_AREA, VM, ...    VA, BASE_KV, ZONE, VMAX, VMIN, LAM_P, LAM_Q, MU_VMAX, MU_VMIN] = idx_bus;[GEN_BUS, PG, QG, QMAX, QMIN, VG, MBASE, GEN_STATUS, PMAX, PMIN, ...    MU_PMAX, MU_PMIN, MU_QMAX, MU_QMIN, PC1, PC2, QC1MIN, QC1MAX, ...    QC2MIN, QC2MAX, RAMP_AGC, RAMP_10, RAMP_30, RAMP_Q, APF] = idx_gen;%% generator infoon = find(gen(:, GEN_STATUS) > 0);      %% which generators are on?gbus = gen(on, GEN_BUS);                %% what buses are they at?%% form net complex bus power injection vectornb = size(bus, 1);ngon = size(on, 1);Cg = sparse(gbus, (1:ngon)', ones(ngon, 1), nb, ngon);  %% connection matrix                                                        %% element i, j is 1 if                                                        %% gen on(j) at bus i is ONSbus =  ( Cg * (gen(on, PG) + 1j * gen(on, QG)) ... %% power injected by generators           - (bus(:, PD) + 1j * bus(:, QD)) ) / ... %% plus power injected by loads        baseMVA;                                    %% converted to p.u.

⛳️ 运行结果

🔗 参考文献

[1] 白丹丹,刘观起,郭丽.基于改进粒子群算法的配电网重构的研究[J].华北电力大学学报:自然科学版, 2006, 33(6):4.DOI:10.3969/j.issn.1007-2691.2006.06.005.

[2] 彭伊伊.基于粒子群算法的配电网恢复重构的研究[D].华中科技大学,2013.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值