【数据分析】基于fNIRS 的瑜伽体式对脑活动和连接的影响附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

瑜伽作为一种古老的身心练习,近年来受到越来越多的关注。研究表明,瑜伽可以改善身心健康,包括减轻压力、改善情绪、提高认知功能等。近红外光谱 (fNIRS) 是一种非侵入性脑成像技术,可以测量大脑皮层血氧水平的变化,从而间接反映神经活动。fNIRS 技术在研究瑜伽对脑活动的影响方面具有独特的优势,因为它可以实时、无创地测量大脑活动,并且不受运动伪影的影响。

本文将综述基于 fNIRS 的瑜伽体式对脑活动和连接的研究进展。首先,我们将介绍 fNIRS 技术的原理和应用;其次,我们将回顾近年来关于瑜伽体式对脑活动和连接的研究成果;最后,我们将讨论 fNIRS 技术在研究瑜伽方面的前景和挑战。

1. fNIRS 技术简介

fNIRS 是一种基于近红外光谱原理的脑成像技术。近红外光可以穿透头皮和颅骨,到达大脑皮层。当神经元活动时,大脑皮层的血氧水平会发生变化。fNIRS 技术通过测量近红外光在不同波长下的吸收和散射情况,可以间接反映神经活动的变化。

与其他脑成像技术相比,fNIRS 技术具有以下优点:

  • 非侵入性: fNIRS 技术不需要进行任何侵入性操作,对受试者无害。

  • 实时性: fNIRS 技术可以实时测量大脑活动,时间分辨率高。

  • 便携性: fNIRS 设备体积小巧,便于携带,可以进行移动测量。

  • 不受运动伪影影响: fNIRS 技术不受运动伪影的影响,可以用于研究运动相关的脑活动。

2. 瑜伽体式对脑活动和连接的影响

近年来,越来越多的研究表明,瑜伽体式可以改善脑活动和连接。fNIRS 技术在这些研究中发挥了重要作用。

2.1 瑜伽体式对脑活动的影响

研究表明,瑜伽体式可以激活大脑的不同区域,包括前额叶皮层、顶叶皮层、颞叶皮层和海马体。这些区域与注意力、情绪调节、认知功能和记忆等功能相关。

例如,一项研究发现,瑜伽体式可以增加前额叶皮层的血氧水平,这与注意力和执行功能的改善有关。另一项研究发现,瑜伽体式可以增加海马体的血氧水平,这与记忆力的改善有关。

2.2 瑜伽体式对脑连接的影响

研究表明,瑜伽体式可以增强大脑不同区域之间的连接。例如,一项研究发现,瑜伽体式可以增加前额叶皮层和顶叶皮层之间的连接,这与注意力和情绪调节的改善有关。另一项研究发现,瑜伽体式可以增加海马体和前额叶皮层之间的连接,这与记忆力的改善有关。

3. fNIRS 技术在研究瑜伽方面的应用前景和挑战

fNIRS 技术在研究瑜伽方面具有广阔的应用前景。fNIRS 技术可以用于研究不同瑜伽体式对脑活动和连接的影响,以及瑜伽对不同人群(如老年人、抑郁症患者)脑活动和连接的影响。

然而,fNIRS 技术在研究瑜伽方面也面临一些挑战。例如,fNIRS 技术的空间分辨率有限,无法精确定位神经活动的源头。此外,fNIRS 技术容易受到生理噪声的影响,需要进行严格的信号处理。

4. 结论

fNIRS 技术为研究瑜伽对脑活动和连接提供了新的工具。近年来,基于 fNIRS 的研究已经取得了一些重要成果,表明瑜伽体式可以改善脑活动和连接。fNIRS 技术在研究瑜伽方面具有广阔的应用前景,但同时也面临一些挑战。未来需要进一步改进 fNIRS 技术,并开展更多高质量的研究,以更好地理解瑜伽对脑活动和连接的影响机制。

⛳️ 运行结果

🔗 参考文献

[1] Jingping X , Xiangyu L , Jinrui Z ,et al.FC-NIRS: A Functional Connectivity Analysis Tool for Near-Infrared Spectroscopy Data[J].Biomed Research International, 2015, 2015:1-11.DOI:10.1155/2015/248724.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值