✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
瑜伽作为一种古老的身心练习,近年来受到越来越多的关注。研究表明,瑜伽可以改善身心健康,包括减轻压力、改善情绪、提高认知功能等。近红外光谱 (fNIRS) 是一种非侵入性脑成像技术,可以测量大脑皮层血氧水平的变化,从而间接反映神经活动。fNIRS 技术在研究瑜伽对脑活动的影响方面具有独特的优势,因为它可以实时、无创地测量大脑活动,并且不受运动伪影的影响。
本文将综述基于 fNIRS 的瑜伽体式对脑活动和连接的研究进展。首先,我们将介绍 fNIRS 技术的原理和应用;其次,我们将回顾近年来关于瑜伽体式对脑活动和连接的研究成果;最后,我们将讨论 fNIRS 技术在研究瑜伽方面的前景和挑战。
1. fNIRS 技术简介
fNIRS 是一种基于近红外光谱原理的脑成像技术。近红外光可以穿透头皮和颅骨,到达大脑皮层。当神经元活动时,大脑皮层的血氧水平会发生变化。fNIRS 技术通过测量近红外光在不同波长下的吸收和散射情况,可以间接反映神经活动的变化。
与其他脑成像技术相比,fNIRS 技术具有以下优点:
-
非侵入性: fNIRS 技术不需要进行任何侵入性操作,对受试者无害。
-
实时性: fNIRS 技术可以实时测量大脑活动,时间分辨率高。
-
便携性: fNIRS 设备体积小巧,便于携带,可以进行移动测量。
-
不受运动伪影影响: fNIRS 技术不受运动伪影的影响,可以用于研究运动相关的脑活动。
2. 瑜伽体式对脑活动和连接的影响
近年来,越来越多的研究表明,瑜伽体式可以改善脑活动和连接。fNIRS 技术在这些研究中发挥了重要作用。
2.1 瑜伽体式对脑活动的影响
研究表明,瑜伽体式可以激活大脑的不同区域,包括前额叶皮层、顶叶皮层、颞叶皮层和海马体。这些区域与注意力、情绪调节、认知功能和记忆等功能相关。
例如,一项研究发现,瑜伽体式可以增加前额叶皮层的血氧水平,这与注意力和执行功能的改善有关。另一项研究发现,瑜伽体式可以增加海马体的血氧水平,这与记忆力的改善有关。
2.2 瑜伽体式对脑连接的影响
研究表明,瑜伽体式可以增强大脑不同区域之间的连接。例如,一项研究发现,瑜伽体式可以增加前额叶皮层和顶叶皮层之间的连接,这与注意力和情绪调节的改善有关。另一项研究发现,瑜伽体式可以增加海马体和前额叶皮层之间的连接,这与记忆力的改善有关。
3. fNIRS 技术在研究瑜伽方面的应用前景和挑战
fNIRS 技术在研究瑜伽方面具有广阔的应用前景。fNIRS 技术可以用于研究不同瑜伽体式对脑活动和连接的影响,以及瑜伽对不同人群(如老年人、抑郁症患者)脑活动和连接的影响。
然而,fNIRS 技术在研究瑜伽方面也面临一些挑战。例如,fNIRS 技术的空间分辨率有限,无法精确定位神经活动的源头。此外,fNIRS 技术容易受到生理噪声的影响,需要进行严格的信号处理。
4. 结论
fNIRS 技术为研究瑜伽对脑活动和连接提供了新的工具。近年来,基于 fNIRS 的研究已经取得了一些重要成果,表明瑜伽体式可以改善脑活动和连接。fNIRS 技术在研究瑜伽方面具有广阔的应用前景,但同时也面临一些挑战。未来需要进一步改进 fNIRS 技术,并开展更多高质量的研究,以更好地理解瑜伽对脑活动和连接的影响机制。
⛳️ 运行结果
🔗 参考文献
[1] Jingping X , Xiangyu L , Jinrui Z ,et al.FC-NIRS: A Functional Connectivity Analysis Tool for Near-Infrared Spectroscopy Data[J].Biomed Research International, 2015, 2015:1-11.DOI:10.1155/2015/248724.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类