【滤波跟踪】基于平方根容积卡尔曼滤波在机器人手臂运动跟踪中的应用附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

机器人手臂运动跟踪是机器人学领域的核心问题之一,其应用范围涵盖工业自动化、医疗辅助、服务机器人等多个领域。在实际应用中,机器人手臂的运动状态往往受到噪声干扰,例如传感器误差、环境变化等,这给精确跟踪带来了挑战。为了解决这一问题,卡尔曼滤波技术被广泛应用于机器人手臂运动跟踪,其中平方根容积卡尔曼滤波(Square Root Unscented Kalman Filter,SRUKF)因其优越的性能而备受关注。

1. 问题描述

机器人手臂运动跟踪的目标是根据传感器数据估计手臂的姿态、位置和速度等状态变量。由于传感器噪声的存在,直接使用传感器数据进行估计会引入误差。卡尔曼滤波是一种递归算法,通过建立系统状态方程和观测方程,利用先验信息和当前观测数据来估计系统状态。

2. 平方根容积卡尔曼滤波算法

SRUKF 是一种非线性卡尔曼滤波算法,它结合了无迹变换(Unscented Transform,UT)和平方根滤波技术。UT 是一种近似非线性函数的方法,它通过选取一组称为sigma点的样本点来近似非线性函数的均值和协方差。平方根滤波技术则通过对协方差矩阵进行平方根分解,避免了协方差矩阵的奇异性问题,提高了算法的稳定性。

3. SRUKF 在机器人手臂运动跟踪中的应用

在机器人手臂运动跟踪中,SRUKF 可以用于估计手臂的姿态、位置和速度等状态变量。具体步骤如下:

  • 状态方程建模: 首先需要建立机器人手臂运动的动力学模型,并将其表示为状态方程。

  • 观测方程建模: 然后需要建立传感器观测模型,将传感器数据与状态变量联系起来。

  • 初始化: 初始化状态变量的先验估计和协方差矩阵。

  • 预测: 利用状态方程预测下一时刻的状态变量和协方差矩阵。

  • 更新: 利用观测数据和预测结果更新状态变量和协方差矩阵。

  • 重复步骤 4-5: 循环执行预测和更新步骤,直到跟踪结束。

4. 仿真实验

为了验证 SRUKF 在机器人手臂运动跟踪中的有效性,我们进行了仿真实验。实验中,我们模拟了一个六自由度机器人手臂,并添加了噪声干扰。仿真结果表明,SRUKF 可以有效地跟踪机器人手臂的运动,并比传统的卡尔曼滤波算法具有更高的精度和稳定性。

5. 结论

SRUKF 是一种有效的非线性卡尔曼滤波算法,其在机器人手臂运动跟踪中具有良好的性能。与传统的卡尔曼滤波算法相比,SRUKF 能够更好地处理非线性系统,并具有更高的精度和稳定性。未来,我们可以进一步研究 SRUKF 在机器人手臂运动跟踪中的应用,例如结合深度学习技术提高算法的鲁棒性和泛化能力。

⛳️ 运行结果

🔗 参考文献

[1]杜占龙,李小民.多重渐消因子强跟踪 SCKF 及其在故障参数估计中的应用[J].系统工程与电子技术, 2014.DOI:10.3969/j.issn.1001-506X.2014.04.06.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值