【图像融合】基于IHS算法实现低分辨率多光谱图像和高分辨全色图像融合附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

遥感图像融合是将不同传感器获取的同一区域图像进行融合,以生成具有更高空间分辨率和丰富光谱信息的图像,从而提高图像的应用价值。其中,低分辨率多光谱图像和高分辨全色图像融合是遥感图像融合领域的重要研究方向之一。IHS变换是一种常用的图像融合方法,其利用图像的亮度、色度和饱和度信息进行融合,能够有效地将高分辨全色图像的空间信息融入到低分辨率多光谱图像中,生成具有高空间分辨率和丰富光谱信息的融合图像。本文将详细介绍IHS算法的原理,并探讨其在低分辨率多光谱图像和高分辨全色图像融合中的应用。

1. IHS变换原理

IHS变换是一种将图像从RGB颜色空间转换到IHS颜色空间的变换方法。IHS颜色空间分别代表图像的亮度(Intensity)、色调(Hue)和饱和度(Saturation)。

  • **亮度(I):**反映图像的整体亮度信息,与图像的灰度值密切相关。

  • **色调(H):**反映图像的颜色信息,描述图像的主色调。

  • **饱和度(S):**反映图像颜色的纯度,即颜色的深浅程度。

IHS变换的具体步骤如下:

  1. RGB to IHS转换: 将输入的RGB图像转换为IHS图像。

  2. IHS空间操作: 在IHS空间中对图像进行操作,例如将高分辨全色图像的亮度信息替换低分辨率多光谱图像的亮度信息。

  3. IHS to RGB转换: 将处理后的IHS图像转换回RGB图像。

2. IHS算法在图像融合中的应用

IHS算法在低分辨率多光谱图像和高分辨全色图像融合中的应用主要基于以下原理:

  • 高分辨率全色图像提供丰富的空间信息: 高分辨全色图像具有高空间分辨率,能够提供清晰的图像细节,但缺乏光谱信息。

  • 低分辨率多光谱图像提供丰富的光谱信息: 低分辨率多光谱图像具有丰富的光谱信息,能够反映地物的不同光谱特征,但空间分辨率较低。

IHS算法通过将高分辨全色图像的亮度信息替换低分辨率多光谱图像的亮度信息,将高分辨率全色图像的空间信息融入到低分辨率多光谱图像中,从而生成具有高空间分辨率和丰富光谱信息的融合图像。

3. IHS算法的具体实现步骤

基于IHS算法实现低分辨率多光谱图像和高分辨全色图像融合的具体步骤如下:

  1. 图像预处理: 对输入的低分辨率多光谱图像和高分辨全色图像进行几何校正、辐射校正等预处理操作,确保两幅图像的空间一致性。

  2. IHS变换: 将低分辨率多光谱图像从RGB颜色空间转换为IHS颜色空间。

  3. 亮度信息替换: 将高分辨全色图像的亮度信息替换低分辨率多光谱图像的亮度信息。

  4. IHS逆变换: 将处理后的IHS图像转换回RGB颜色空间,得到融合图像。

4. IHS算法的优缺点

IHS算法具有以下优点:

  • 简单易行: IHS算法的实现过程相对简单,易于理解和操作。

  • 融合效果较好: IHS算法能够有效地将高分辨全色图像的空间信息融入到低分辨率多光谱图像中,生成具有高空间分辨率和丰富光谱信息的融合图像。

IHS算法也存在以下缺点:

  • 对图像的亮度信息依赖性强: IHS算法主要利用图像的亮度信息进行融合,如果图像的亮度信息存在偏差,则会影响融合效果。

  • 无法完全保留原始图像的光谱信息: IHS算法在融合过程中会对原始图像的光谱信息进行一定程度的损失。

5. 结论

IHS算法是一种常用的图像融合方法,能够有效地将高分辨全色图像的空间信息融入到低分辨率多光谱图像中,生成具有高空间分辨率和丰富光谱信息的融合图像。该算法简单易行,融合效果较好,但对图像的亮度信息依赖性强,无法完全保留原始图像的光谱信息。在实际应用中,需要根据具体情况选择合适的图像融合方法。

⛳️ 运行结果

🔗 参考文献

[1]温黎茗,彭力,谢林柏.一种多光谱与高分辨率全色图像融合算法研究[C]//全国图象图形学学术会议.2010.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值