✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
水声通信作为水下信息传输的关键技术,在海洋资源勘探、军事应用、环境监测等领域发挥着重要作用。然而,水声信道具有多径效应、时间变化、频率选择性等复杂特性,严重限制了水声通信的可靠性和传输速率。为了克服这些挑战,近年来,编码调制联合设计成为水声通信领域的研究热点之一。
水声信道特性及挑战
水声信道与陆地无线信道相比具有显著的不同:
-
多径效应: 声波在水中传播时会遇到各种障碍物,例如水面、海底、生物等,产生多条路径,导致信号到达接收端时出现时间延迟和相位偏移。
-
时间变化: 海水温度、盐度、密度等因素会随着时间变化,导致声速变化,进而影响信道特性。
-
频率选择性: 水声信道对不同频率的信号具有不同的衰减和延迟,导致信号失真。
-
低信噪比: 水下环境噪声普遍较高,包括船舶噪声、生物噪声、机械噪声等,降低了信号的信噪比。
这些特性给水声通信带来了巨大挑战,传统的编码和调制设计方法难以有效地应对。
编码调制联合设计
编码调制联合设计 (Coded Modulation, CM) 是一种将信道编码和调制结合在一起的技术,通过将信息比特映射到具有特定编码结构的调制符号,实现更强大的抗噪声能力和更高的传输效率。
CM 的优势:
-
提高抗噪声性能: 编码调制可以将冗余信息嵌入到调制符号中,从而提高抗噪声能力。
-
提升频谱效率: 通过合理的编码设计,可以提高频谱利用率,传输更多信息。
-
降低解码复杂度: 编码和调制联合设计可以简化解码过程,降低计算复杂度。
面向水声通信的 CM 设计
针对水声信道的特点,面向水声通信的 CM 设计需要考虑以下关键问题:
-
信道编码: 需选择适合水声信道特性的编码方案,例如卷积码、Turbo 码、LDPC 码等。
-
调制方案: 需根据信道条件和所需传输速率选择合适的调制方案,例如 BPSK、QPSK、MPSK 等。
-
联合优化: 需要对编码方案、调制方案以及接收机的解码算法进行联合优化,以实现最佳性能。
常见的 CM 设计方法:
-
基于卷积码的 CM: 将卷积码与各种调制方案相结合,如 TCM (Trellis Coded Modulation)、CPM (Continuous Phase Modulation) 等。
-
基于 Turbo 码的 CM: 利用 Turbo 码的优异性能,实现更高的编码增益。
-
基于 LDPC 码的 CM: 由于 LDPC 码具有灵活性和可扩展性,在水声通信中也得到了广泛应用。
总结
编码调制联合设计是提高水声通信性能的有效途径,通过将信道编码和调制有机结合,可以有效对抗水声信道的多径效应、时间变化、频率选择性和低信噪比等问题,提升数据传输的可靠性和效率。未来,面向水声通信的 CM 设计将进一步探索更高效、更灵活、更智能的编码调制方案,推动水声通信技术的持续发展。
⛳️ 运行结果
🔗 参考文献
[1] 邹司宸.基于LDPC-OFDM编码调制的水下应急语音通信系统优化设计与实现[D].哈尔滨工程大学[2024-05-22].DOI:CNKI:CDMD:2.1018.274653.
[2] 朱培斌.扩谱水声通信网络节点技术研究[J]. 2011.
[3] 朱培斌.扩谱水声通信网络节点技术研究[D]. 2011.DOI:http://dspace.xmu.edu.cn:8080/dspace/handle/2288/52999.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类