【图像隐写】基于奇异值分解SVD结合置乱Arnold实现数字水印嵌入攻击提取,相关系数NC附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

近年来,随着数字媒体的快速发展和广泛应用,数字版权保护问题日益突出。数字水印技术作为一种有效的版权保护手段,能够将版权信息嵌入到数字媒体中,从而实现对数字媒体的版权认证和追踪。图像隐写作为数字水印技术的重要分支,利用图像本身的冗余信息来隐藏秘密信息,并尽可能保持图像的视觉质量。

图像隐写原理

图像隐写技术通常基于以下两个基本原理:

  • 图像冗余性: 数字图像通常包含大量冗余信息,例如图像的纹理、颜色等。隐写算法可以利用这些冗余信息来隐藏秘密信息,而不明显改变图像的视觉质量。

  • 人类视觉系统特性: 人类视觉系统对图像的某些特征变化并不敏感,例如亮度、色度等。隐写算法可以利用这些特性,将秘密信息嵌入到图像中,而不被人类视觉系统察觉。

奇异值分解SVD

奇异值分解 (Singular Value Decomposition, SVD) 是线性代数中的一种重要矩阵分解方法,可以将任意矩阵分解为三个矩阵的乘积:

A = UΣV^T

其中,U和V是正交矩阵,Σ是对角矩阵,其对角元素称为奇异值。SVD在图像处理中有着广泛的应用,例如图像压缩、降维、图像识别等。

置乱Arnold变换

Arnold 变换是一种简单的图像置乱变换,可以将图像中的像素位置进行随机排列,从而提高图像的安全性。Arnold 变换的公式如下:

x' = (ax + by) mod N
y' = (cx + dy) mod N

其中,(x, y) 为原始图像中像素的坐标,(x', y') 为置乱后的像素坐标,a、b、c、d 为变换矩阵中的元素,N 为图像的尺寸。

基于SVD结合Arnold置乱的图像隐写

本文提出一种基于 SVD 结合 Arnold 置乱的图像隐写方案,该方案利用 SVD 将图像分解成三个矩阵,并对奇异值矩阵进行 Arnold 变换,从而实现数字水印的嵌入。具体步骤如下:

  1. 图像载体预处理: 对载体图像进行预处理,例如灰度化、大小调整等。

  2. SVD 分解: 对载体图像进行 SVD 分解,得到三个矩阵 U、Σ、V。

  3. 水印嵌入: 将水印信息嵌入到奇异值矩阵 Σ 中,例如将水印信息与 Σ 的奇异值进行异或运算。

  4. Arnold 置乱: 对嵌入水印后的奇异值矩阵 Σ 进行 Arnold 变换,增加水印的安全性。

  5. 图像重建: 将置乱后的 Σ 与 U、V 矩阵相乘,重建嵌入水印的图像。

水印提取:

  1. SVD 分解: 对嵌入水印的图像进行 SVD 分解,得到三个矩阵 U、Σ、V。

  2. Arnold 逆变换: 对奇异值矩阵 Σ 进行 Arnold 逆变换,恢复原始的奇异值矩阵。

  3. 水印信息提取: 从 Σ 中提取嵌入的水印信息,例如将 Σ 的奇异值与水印信息进行异或运算。

性能评估:

为了评估该隐写方案的性能,本文采用相关系数 NC (Normalized Correlation) 作为指标,计算嵌入水印后的图像与原始图像之间的相关性。NC 越高,则表明图像的视觉质量越好。

实验结果与分析:

本文进行了大量的实验,对不同尺寸、不同内容的图像进行了隐写测试。结果表明,该隐写方案能够有效地将水印信息嵌入到图像中,并且对图像的视觉质量影响较小。NC 的测试结果也表明,该方案具有较高的图像质量保持能力。

结论

本文提出了一种基于 SVD 结合 Arnold 置乱的图像隐写方案,该方案利用 SVD 将图像分解成三个矩阵,并对奇异值矩阵进行 Arnold 变换,从而实现数字水印的嵌入。实验结果表明,该方案能够有效地将水印信息嵌入到图像中,并且对图像的视觉质量影响较小。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值