✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
近年来,随着数字媒体的快速发展和广泛应用,数字版权保护问题日益突出。数字水印技术作为一种有效的版权保护手段,能够将版权信息嵌入到数字媒体中,从而实现对数字媒体的版权认证和追踪。图像隐写作为数字水印技术的重要分支,利用图像本身的冗余信息来隐藏秘密信息,并尽可能保持图像的视觉质量。
图像隐写原理
图像隐写技术通常基于以下两个基本原理:
-
图像冗余性: 数字图像通常包含大量冗余信息,例如图像的纹理、颜色等。隐写算法可以利用这些冗余信息来隐藏秘密信息,而不明显改变图像的视觉质量。
-
人类视觉系统特性: 人类视觉系统对图像的某些特征变化并不敏感,例如亮度、色度等。隐写算法可以利用这些特性,将秘密信息嵌入到图像中,而不被人类视觉系统察觉。
奇异值分解SVD
奇异值分解 (Singular Value Decomposition, SVD) 是线性代数中的一种重要矩阵分解方法,可以将任意矩阵分解为三个矩阵的乘积:
A = UΣV^T
其中,U和V是正交矩阵,Σ是对角矩阵,其对角元素称为奇异值。SVD在图像处理中有着广泛的应用,例如图像压缩、降维、图像识别等。
置乱Arnold变换
Arnold 变换是一种简单的图像置乱变换,可以将图像中的像素位置进行随机排列,从而提高图像的安全性。Arnold 变换的公式如下:
x' = (ax + by) mod N
y' = (cx + dy) mod N
其中,(x, y) 为原始图像中像素的坐标,(x', y') 为置乱后的像素坐标,a、b、c、d 为变换矩阵中的元素,N 为图像的尺寸。
基于SVD结合Arnold置乱的图像隐写
本文提出一种基于 SVD 结合 Arnold 置乱的图像隐写方案,该方案利用 SVD 将图像分解成三个矩阵,并对奇异值矩阵进行 Arnold 变换,从而实现数字水印的嵌入。具体步骤如下:
-
图像载体预处理: 对载体图像进行预处理,例如灰度化、大小调整等。
-
SVD 分解: 对载体图像进行 SVD 分解,得到三个矩阵 U、Σ、V。
-
水印嵌入: 将水印信息嵌入到奇异值矩阵 Σ 中,例如将水印信息与 Σ 的奇异值进行异或运算。
-
Arnold 置乱: 对嵌入水印后的奇异值矩阵 Σ 进行 Arnold 变换,增加水印的安全性。
-
图像重建: 将置乱后的 Σ 与 U、V 矩阵相乘,重建嵌入水印的图像。
水印提取:
-
SVD 分解: 对嵌入水印的图像进行 SVD 分解,得到三个矩阵 U、Σ、V。
-
Arnold 逆变换: 对奇异值矩阵 Σ 进行 Arnold 逆变换,恢复原始的奇异值矩阵。
-
水印信息提取: 从 Σ 中提取嵌入的水印信息,例如将 Σ 的奇异值与水印信息进行异或运算。
性能评估:
为了评估该隐写方案的性能,本文采用相关系数 NC (Normalized Correlation) 作为指标,计算嵌入水印后的图像与原始图像之间的相关性。NC 越高,则表明图像的视觉质量越好。
实验结果与分析:
本文进行了大量的实验,对不同尺寸、不同内容的图像进行了隐写测试。结果表明,该隐写方案能够有效地将水印信息嵌入到图像中,并且对图像的视觉质量影响较小。NC 的测试结果也表明,该方案具有较高的图像质量保持能力。
结论
本文提出了一种基于 SVD 结合 Arnold 置乱的图像隐写方案,该方案利用 SVD 将图像分解成三个矩阵,并对奇异值矩阵进行 Arnold 变换,从而实现数字水印的嵌入。实验结果表明,该方案能够有效地将水印信息嵌入到图像中,并且对图像的视觉质量影响较小。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类