基于双向时间卷积门控循环单元融合注意力机制BiTCN-GRU-Attention实现负荷多变量时间序列预测附matlab代码

 【控制】全驱动四旋翼无人机带螺旋桨倾斜机构的建模与控制matlab仿真✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

摘要: 随着电力系统的日益复杂化,准确预测负荷对于电力系统的安全稳定运行至关重要。传统的负荷预测方法往往忽视了时间序列的多变量特性和时间相关性,难以有效捕捉负荷变化的复杂规律。本文提出了一种基于双向时间卷积门控循环单元融合注意力机制 (BiTCN-GRU-Attention) 的负荷多变量时间序列预测模型。该模型利用双向时间卷积网络 (BiTCN) 提取多变量时间序列的空间特征,并通过门控循环单元 (GRU) 网络捕获时间序列的长期依赖关系。同时,引入注意力机制 (Attention) 自动识别不同特征变量对预测结果的重要程度,提高模型的预测精度。通过对真实电力负荷数据的实验验证,BiTCN-GRU-Attention 模型在预测精度方面显著优于传统方法,展现出良好的预测性能。

关键词: 负荷预测;多变量时间序列;双向时间卷积网络;门控循环单元;注意力机制

1. 绪论

电力负荷作为电力系统的重要参数,其预测结果直接影响着电力系统的安全稳定运行和经济效益。随着电力负荷的波动性日益增强,传统的负荷预测方法难以满足实际需求。近年来,深度学习技术在时间序列预测领域取得了显著进展,为负荷预测提供了新的思路和方法。

现有的负荷预测方法主要分为两类:基于统计模型的预测方法和基于机器学习的预测方法。基于统计模型的预测方法,例如自回归移动平均模型 (ARIMA) 和指数平滑模型 (ES),虽然简单易懂,但其预测精度有限,难以有效处理复杂的负荷波动。而基于机器学习的预测方法,例如支持向量机 (SVM) 和人工神经网络 (ANN),能够捕捉到更复杂的非线性特征,但其对模型参数的选择和优化比较敏感,且容易陷入局部最优解。

为了克服现有方法的不足,本文提出了一种新的负荷预测模型:基于双向时间卷积门控循环单元融合注意力机制 (BiTCN-GRU-Attention)。该模型将双向时间卷积网络 (BiTCN) 与门控循环单元 (GRU) 网络结合,并引入注意力机制 (Attention) 来提升模型的预测精度。

2. 模型框架

BiTCN-GRU-Attention 模型的框架如图 1 所示。模型主要分为三个部分:输入层、特征提取层和输出层。

2.1 输入层

输入层接收多变量时间序列数据,包括历史负荷、气象信息、经济指标等。数据经过预处理,例如归一化和数据平滑,以便于模型的学习。

2.2 特征提取层

特征提取层主要包括以下几个部分:

  • 双向时间卷积网络 (BiTCN):BiTCN 利用双向卷积操作提取时间序列数据的空间特征,并通过卷积核的滑动来捕捉数据的时间相关性。

  • 门控循环单元 (GRU):GRU 是一种循环神经网络,能够捕捉时间序列的长期依赖关系。GRU 通过门控机制选择性地保留重要信息,并有效地抑制噪声的影响。

  • 注意力机制 (Attention):Attention 机制能够识别不同特征变量对预测结果的重要程度,并根据其重要性分配不同的权重。

2.3 输出层

输出层根据特征提取层提取的特征信息,预测未来的负荷值。

3. 模型细节

3.1 双向时间卷积网络

双向时间卷积网络 (BiTCN) 采用两个方向的卷积操作,分别提取时间序列数据的正向和反向特征。正向卷积操作从时间序列的起点开始,提取向前移动的特征;反向卷积操作从时间序列的终点开始,提取向后移动的特征。BiTCN 可以有效地提取多变量时间序列的空间特征,并捕捉数据的时间相关性。

3.2 门控循环单元

门控循环单元 (GRU) 是一种改进的循环神经网络,能够更好地捕捉时间序列的长期依赖关系。GRU 通过门控机制选择性地保留重要信息,并有效地抑制噪声的影响。

3.3 注意力机制

注意力机制 (Attention) 能够识别不同特征变量对预测结果的重要程度,并根据其重要性分配不同的权重。通过引入注意力机制,模型可以更加关注对预测结果影响较大的特征变量,提高预测精度。

4. 实验验证

为了验证 BiTCN-GRU-Attention 模型的有效性,本文采用真实电力负荷数据进行实验。实验结果表明,BiTCN-GRU-Attention 模型在预测精度方面显著优于传统方法,例如 ARIMA 和 SVM。

5. 结论

本文提出了一种基于双向时间卷积门控循环单元融合注意力机制 (BiTCN-GRU-Attention) 的负荷多变量时间序列预测模型。该模型充分利用了双向时间卷积网络、门控循环单元和注意力机制的优势,有效地提取了多变量时间序列的时空特征,并提高了模型的预测精度。实验结果表明,BiTCN-GRU-Attention 模型具有较高的预测精度,能够满足实际负荷预测的需求。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

  • 11
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
matlab基于卷-循环单元结合SE注意力机制(CNN-GRU-SE Attention)的数据回归是一种利用深度学习的方法来解决数据回归问题的技术。这种方法结合了卷神经网络(CNN)、循环单元(GRU)和SE注意力机制,可以有效地提取数据中的特征,并根据重要性进行加权处理,从而提高回归模型的性能。 首先,卷神经网络用于提取数据中的局部特征。通过卷操作可以有效地捕捉数据中的空间关系,提取出数据的局部特征。卷神经网络通常包含多个卷层和池化层,用于构建深度特征表示。 其次,循环单元用于对数据中的时间序列信息进行建模。循环单元在传递信息的同时,还可以学习到序列数据中的长期依赖关系。通过GRU单元,在时间序列上对数据进行逐步处理,从而有效地捕捉到数据的动态特征。 最后,SE注意力机制用于对特征的重要性进行加权处理。SE注意力机制可以根据每个特征的重要性,自动地学习到一个加权系数,使得对于重要特征的权重更高。这样可以让模型更关注于对回归结果有更大影响的特征,提高回归的精度和准确性。 综上所述,matlab基于卷-循环单元结合SE注意力机制的数据回归方法是一种利用深度学习技术来解决回归问题的方法。该方法能够提取数据中的特征,建模序列信息,并根据特征的重要性进行加权处理,从而提高回归模型的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值