【风电预测】基于侏儒猫鼬优化算法DMO优化卷积神经网络结合注意力机制的长短记忆网络CNN-LSTM-Attention实现风电功率预测附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

**摘要:**风电功率预测对于提高风电场运行效率、稳定电力系统运行至关重要。近年来,深度学习技术在风电功率预测领域展现出巨大潜力。本文提出了一种基于侏儒猫鼬优化算法DMO优化卷积神经网络结合注意力机制的长短记忆网络CNN-LSTM-Attention模型,用于实现风电功率预测。该模型通过卷积神经网络提取风电功率时间序列特征,利用长短记忆网络捕捉时间序列的长期依赖关系,并引入注意力机制来关注关键时间信息,最终实现更精准的风电功率预测。通过对真实风电数据的实验验证,结果表明该模型在预测精度和稳定性方面优于传统的预测方法。

**关键词:**风电功率预测,侏儒猫鼬优化算法,卷积神经网络,长短记忆网络,注意力机制

引言

近年来,随着全球能源结构调整和绿色环保理念的深入发展,风力发电作为一种清洁、可再生能源,在全球能源体系中扮演着越来越重要的角色。然而,风能具有间歇性和波动性,使得风电功率预测成为提高风电场运行效率、稳定电力系统运行的关键技术。

传统的风电功率预测方法主要依赖于统计模型和物理模型,这些方法往往受限于数据量和模型复杂度的限制,难以有效捕捉风电功率时间序列的复杂变化特征。近年来,深度学习技术凭借其强大的特征学习能力,在风电功率预测领域展现出巨大潜力。

模型介绍

本文提出了一种基于侏儒猫鼬优化算法DMO优化卷积神经网络结合注意力机制的长短记忆网络CNN-LSTM-Attention模型,用于实现风电功率预测。该模型的结构如图1所示:

图1 模型结构图

1. 数据预处理

首先对原始风电功率数据进行预处理,包括数据清洗、数据归一化等,以提高模型训练效率和预测精度。

2. 卷积神经网络 (CNN)

卷积神经网络 (CNN) 能够提取风电功率时间序列的局部特征,例如风速、风向等,并通过卷积操作提取特征图。

3. 长短记忆网络 (LSTM)

长短记忆网络 (LSTM) 能够捕捉时间序列的长期依赖关系,例如历史风电功率数据对当前预测的影响,并通过门控机制有效地解决梯度消失问题。

4. 注意力机制 (Attention)

注意力机制能够关注关键时间信息,例如最近一段时间的风电功率变化,并将其赋予更高的权重,以提高预测精度。

5. 侏儒猫鼬优化算法 (DMO)

侏儒猫鼬优化算法 (DMO) 是一种新型的元启发式优化算法,能够有效地优化模型参数,提高模型性能。

​结论

本文提出了一种基于侏儒猫鼬优化算法DMO优化卷积神经网络结合注意力机制的长短记忆网络CNN-LSTM-Attention模型,用于实现风电功率预测。该模型充分利用了深度学习技术的优势,有效地捕捉了风电功率时间序列的复杂变化特征,并通过DMO算法优化模型参数,提高了预测精度和稳定性。实验结果表明,该模型在风电功率预测方面取得了良好的效果,为提高风电场运行效率和稳定电力系统运行提供了新的技术手段。​

⛳️ 运行结果

📣 部分代码

function [grad_b, grad_W] = ComputeGradsNumSlow(X, Y, W, b, lambda, h)no = size(W, 1);d = size(X, 1);grad_W = zeros(size(W));grad_b = zeros(no, 1);for i=1:length(b)    b_try = b;    b_try(i) = b_try(i) - h;    c1 = ComputeCost(X, Y, W, b_try, lambda);    b_try = b;    b_try(i) = b_try(i) + h;    c2 = ComputeCost(X, Y, W, b_try, lambda);    grad_b(i) = (c2-c1) / (2*h);endfor i=1:numel(W)        W_try = W;    W_try(i) = W_try(i) - h;    c1 = ComputeCost(X, Y, W_try, b, lambda);        W_try = W;    W_try(i) = W_try(i) + h;    c2 = ComputeCost(X, Y, W_try, b, lambda);        grad_W(i) = (c2-c1) / (2*h);end

🔗 参考文献

[1] 邵星,曹洪宇,王翠香,等.一种基于注意力机制的VMD-CNN-LSTM短期风电功率预测方法[J].[2024-07-17].DOI:10.12677/ORF.2024.141067.

[2] 李彬,邓力凡,彭丽.基于CNN-LSTM-Attention神经网络的高压电缆局部放电预测方法研究[J].湖南城市学院学报:自然科学版, 2023.

[3] 宋新甫,关洪浩,任娟,等.一种基于attention机制的CNN-LSTM短期风电功率预测方法:202110564394[P][2024-07-17].

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

  • 20
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
根据引用内容,侏儒优化算法(Dwarf Mongoose Optimization,DMO)是一种群体智能优化算法,其灵感来源于侏儒的群体觅食行为。引用中还提到了DMO算法Matlab代码和python代码。 因此,你可以在Python中实现侏儒优化算法。以下是一个简单的Python代码示例: ```python # 导入所需的库 import numpy as np # 定义侏儒优化算法函数 def dwarf_mongoose_optimization(objective_func, num_dimensions, num_iterations, population_size): # 初始化种群 population = np.random.uniform(low=-1, high=1, size=(population_size, num_dimensions)) # 迭代优化过程 for iteration in range(num_iterations): # 计算适应度值 fitness_values = objective_func(population) # 选择最佳个体 best_individual = population[np.argmax(fitness_values)] best_fitness = np.max(fitness_values) # 更新种群 new_population = np.zeros_like(population) for i in range(population_size): # 随机选择两个个体 indices = np.random.choice(population_size, size=2, replace=False) individual1 = population = individual1 + np.random.uniform(low=-1, high=1) * (best_individual - individual2) population = new_population return best_individual, best_fitness # 定义适应度函数(示例) def objective_func(x): return np.sum(x**2, axis=1) # 设置算法参数 num_dimensions = 10 num_iterations = 100 population_size = 50 # 运行侏儒优化算法 best_individual, best_fitness = dwarf_mongoose_optimization(objective_func, num_dimensions, num_iterations, population_size) # 打印结果 print("最佳个体:", best_individual) print("最佳适应度:", best_fitness) ``` 请注意,这只是一个简单的示例代码,你可以根据自己的需求进行修改和扩展。在实际应用中,你需要定义自己的目标函数,并根据具体问题进行参数调整和结果分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值