✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
分数阶微积分作为经典微积分的推广,近年来在物理、化学、生物、工程等领域得到了广泛的应用。在机械系统中,分数阶微积分可以用来描述具有记忆性和遗传特性的材料和系统行为,如粘弹性材料、分数阶阻尼器等。本文将探讨分数质量弹簧阻尼系统的Matlab代码实现,并分析其特性。
1. 分数阶微积分的定义
分数阶微积分是对经典微积分的推广,将微积分的阶次从整数扩展到实数或复数。常用的分数阶微积分定义包括:
2. 分数质量弹簧阻尼系统模型
分数质量弹簧阻尼系统是指系统中存在分数阶阻尼器,其阻尼力与速度的微分阶数有关。该系统的运动方程可以写成:
𝑚𝐷2𝑥(𝑡)+𝑐𝐷𝛼𝑥(𝑡)+𝑘𝑥(𝑡)=𝐹(𝑡)
3. Matlab代码实现
以下代码使用Matlab的fractional calculus toolbox来模拟分数质量弹簧阻尼系统的行为。xlabel('时间 (s)');
ylabel('位移 (m)');
title('分数质量弹簧阻尼系统位移响应');
% 定义分数阶系统微分方程
function dxdt = fractional_system(t, x, m, c, k, alpha, F)
dxdt = [x(2); (F(t) - k*x(1) - c*fractional_derivative(t, x(1), alpha)) / m];
end
% 计算分数阶导数
function dfdt = fractional_derivative(t, f, alpha)
dfdt = fracdiff(t, f, alpha); % 使用fractional calculus toolbox的fracdiff函数
end
4. 代码分析
-
代码首先定义了系统的参数,包���质量、阻尼系数、弹性系数、分数阶阻尼系数以及外力函数。
-
然后定义了时间参数,包括模拟时间范围和时间步长。
-
初始化时间向量和初始条件。
-
使用ode45函数求解微分方程,并将结果存储在变量x中。
-
最后绘制位移响应曲线。
5. 结论
本文介绍了分数质量弹簧阻尼系统的Matlab代码实现,并分析了其特性。分数阶阻尼器可以更加精确地描述具有记忆性和遗传特性的材料和系统行为,为机械系统的设计和分析提供了新的工具。Matlab提供的fractional calculus toolbox为分数阶微积分的数值计算提供了强大的支持,可以方便地实现分数阶系统的仿真和分析。
📣 部分代码
🔗 参考文献
[1] 盛力,冯平法.车载DVD机芯振动性能研究[J].清华大学学报(自然科学版), 2006.DOI:JournalArticle/5ae9bdc1c095d713d895cc58.
[2] 孔令芳.移动弹簧阻尼质量系统下粘弹性地基上输流管道的振动特性[D].西安理工大学,2016.DOI:10.7666/d.D01040924.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类