2024高教社杯数学建模国赛ABCDE题思路代码解析+成品参考论文获取

 一、引言

高教社杯全国大学生数学建模竞赛(以下简称“国赛”)是面向全国大学生的一项重要赛事,旨在培养学生的数学建模能力、团队合作能力和科学研究能力。近年来,国赛的参赛人数和比赛难度不断提升,对参赛者的数学建模能力提出了更高的要求。本文将针对2024年国赛ABCDDE五道赛题,分别从题目背景、问题分析、模型建立、代码实现、结果分析等方面进行详细的思路解析,并提供参考论文以及相关代码供大家学习参考。

二、2024年国赛赛题解析

A题:

题目背景: 题目通常涉及社会生活中的实际问题,例如疫情防控、资源分配、环境保护等,需要参赛者利用数学模型进行分析和预测。

问题分析: 需要分析题目中所涉及的变量关系,明确目标函数和约束条件,选择合适的数学模型进行建模。

模型建立: 常见的模型包括:线性规划、非线性规划、整数规划、动态规划、回归分析、时间序列分析等。

代码实现: 需要根据所选择的模型,使用Python、MATLAB等编程语言进行代码实现。

结果分析: 对模型的计算结果进行分析,并结合实际情况进行解释说明,并提出相应的建议。

B题:

题目背景: 题目通常涉及数据分析和预测问题,例如市场调研、金融投资、风险评估等。

问题分析: 需要对给定数据进行分析,挖掘数据中的规律和趋势,建立预测模型。

模型建立: 常见的模型包括:回归分析、时间序列分析、机器学习模型(例如神经网络、支持向量机等)。

代码实现: 需要使用Python、R、MATLAB等编程语言进行代码实现,并使用相应的库进行数据分析和建模。

结果分析: 对模型的预测结果进行评估,并结合实际情况进行解释说明,并提出相应的建议。

C题:

题目背景: 题目通常涉及工程技术、科学研究等方面的实际问题,需要参赛者利用数学模型进行优化和设计。

问题分析: 需要分析题目中所涉及的变量关系,明确优化目标和约束条件,选择合适的数学模型进行优化。

模型建立: 常见的模型包括:线性规划、非线性规划、整数规划、动态规划、仿真模型等。

代码实现: 需要根据所选择的模型,使用Python、MATLAB等编程语言进行代码实现。

结果分析: 对模型的优化结果进行分析,并结合实际情况进行解释说明,并提出相应的建议。

D题:

题目背景: 题目通常涉及信息技术、数据挖掘等方面的实际问题,需要参赛者利用数学模型进行分析和处理。

问题分析: 需要分析题目中所涉及的数据结构和特征,选择合适的数学模型进行处理。

模型建立: 常见的模型包括:聚类分析、分类分析、关联规则挖掘、数据降维等。

代码实现: 需要使用Python、R、MATLAB等语言进行代码实现,并使用相应的库进行数据分析和建模。

结果分析: 对模型的分析结果进行解释说明,并提出相应的建议。

E题:

题目背景: 题目通常涉及社会发展、经济管理等方面的实际问题,需要参赛者利用数学模型进行模拟和预测。

问题分析: 需要分析题目中所涉及的系统结构和变量关系,选择合适的数学模型进行模拟和预测。

模型建立: 常见的模型包括:系统动力学模型、Agent-based模型、微分方程模型等。

代码实现: 需要根据所选择的模型,使用Python、MATLAB等语言进行代码实现。

结果分析: 对模型的模拟结果进行分析,并结合实际情况进行解释说明,并提出相应的建议。

三、参考论文及代码获取

为了帮助参赛者更好地理解和学习国赛题目,我们整理了部分参考论文和代码,具体获取方式如下:

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

四、结语

高教社杯国赛是一项挑战性极高的赛事,需要参赛者具备扎实的数学基础、编程能力和团队合作能力。通过对历年赛题的分析和学习,参赛者可以更好地理解数学建模的思想和方法,并为参赛做好准备。希望本文提供的思路解析和资源能够帮助参赛者取得好成绩。

注: 以上仅为对2024年国赛ABCDDE五道赛题的简要分析,具体的题目内容和要求以官方发布的赛题为准。参赛者需要根据具体的题目进行深入研究和分析,并选择合适的模型进行建模。

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值