一、引言
高教社杯全国大学生数学建模竞赛(以下简称“国赛”)是面向全国大学生的一项重要赛事,旨在培养学生的数学建模能力、团队合作能力和科学研究能力。近年来,国赛的参赛人数和比赛难度不断提升,对参赛者的数学建模能力提出了更高的要求。本文将针对2024年国赛ABCDDE五道赛题,分别从题目背景、问题分析、模型建立、代码实现、结果分析等方面进行详细的思路解析,并提供参考论文以及相关代码供大家学习参考。
二、2024年国赛赛题解析
A题:
题目背景: 题目通常涉及社会生活中的实际问题,例如疫情防控、资源分配、环境保护等,需要参赛者利用数学模型进行分析和预测。
问题分析: 需要分析题目中所涉及的变量关系,明确目标函数和约束条件,选择合适的数学模型进行建模。
模型建立: 常见的模型包括:线性规划、非线性规划、整数规划、动态规划、回归分析、时间序列分析等。
代码实现: 需要根据所选择的模型,使用Python、MATLAB等编程语言进行代码实现。
结果分析: 对模型的计算结果进行分析,并结合实际情况进行解释说明,并提出相应的建议。
B题:
题目背景: 题目通常涉及数据分析和预测问题,例如市场调研、金融投资、风险评估等。
问题分析: 需要对给定数据进行分析,挖掘数据中的规律和趋势,建立预测模型。
模型建立: 常见的模型包括:回归分析、时间序列分析、机器学习模型(例如神经网络、支持向量机等)。
代码实现: 需要使用Python、R、MATLAB等编程语言进行代码实现,并使用相应的库进行数据分析和建模。
结果分析: 对模型的预测结果进行评估,并结合实际情况进行解释说明,并提出相应的建议。
C题:
题目背景: 题目通常涉及工程技术、科学研究等方面的实际问题,需要参赛者利用数学模型进行优化和设计。
问题分析: 需要分析题目中所涉及的变量关系,明确优化目标和约束条件,选择合适的数学模型进行优化。
模型建立: 常见的模型包括:线性规划、非线性规划、整数规划、动态规划、仿真模型等。
代码实现: 需要根据所选择的模型,使用Python、MATLAB等编程语言进行代码实现。
结果分析: 对模型的优化结果进行分析,并结合实际情况进行解释说明,并提出相应的建议。
D题:
题目背景: 题目通常涉及信息技术、数据挖掘等方面的实际问题,需要参赛者利用数学模型进行分析和处理。
问题分析: 需要分析题目中所涉及的数据结构和特征,选择合适的数学模型进行处理。
模型建立: 常见的模型包括:聚类分析、分类分析、关联规则挖掘、数据降维等。
代码实现: 需要使用Python、R、MATLAB等语言进行代码实现,并使用相应的库进行数据分析和建模。
结果分析: 对模型的分析结果进行解释说明,并提出相应的建议。
E题:
题目背景: 题目通常涉及社会发展、经济管理等方面的实际问题,需要参赛者利用数学模型进行模拟和预测。
问题分析: 需要分析题目中所涉及的系统结构和变量关系,选择合适的数学模型进行模拟和预测。
模型建立: 常见的模型包括:系统动力学模型、Agent-based模型、微分方程模型等。
代码实现: 需要根据所选择的模型,使用Python、MATLAB等语言进行代码实现。
结果分析: 对模型的模拟结果进行分析,并结合实际情况进行解释说明,并提出相应的建议。
三、参考论文及代码获取
为了帮助参赛者更好地理解和学习国赛题目,我们整理了部分参考论文和代码,具体获取方式如下:
更多Matlab完整代码及仿真定制内容点击👇
四、结语
高教社杯国赛是一项挑战性极高的赛事,需要参赛者具备扎实的数学基础、编程能力和团队合作能力。通过对历年赛题的分析和学习,参赛者可以更好地理解数学建模的思想和方法,并为参赛做好准备。希望本文提供的思路解析和资源能够帮助参赛者取得好成绩。
注: 以上仅为对2024年国赛ABCDDE五道赛题的简要分析,具体的题目内容和要求以官方发布的赛题为准。参赛者需要根据具体的题目进行深入研究和分析,并选择合适的模型进行建模。
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类