✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
轴承作为机械设备中重要的传动部件,其运行状态直接影响着设备的整体性能和可靠性。近年来,随着工业自动化程度的不断提高,轴承故障诊断技术也得到了快速发展。双向时间卷积神经网络(BiTCN)作为一种新型深度学习模型,能够有效地提取时间序列数据的双向特征,在轴承故障诊断方面表现出巨大潜力。然而,BiTCN模型的超参数优化问题依然存在,影响着模型的诊断性能。针对这一问题,本文提出了一种基于蛇群优化算法(SO)优化BiTCN模型的轴承故障诊断方法。该方法利用SO算法的全局寻优能力对BiTCN模型的超参数进行优化,从而提高模型的诊断精度。本文通过Matlab代码实现该方法,并使用实际轴承故障数据集进行测试,验证了该方法的有效性。
关键词: 轴承故障诊断,双向时间卷积神经网络,蛇群优化算法,Matlab
1. 概述
轴承是机械设备中重要的传动部件,其状态直接影响着设备的整体性能和可靠性。当轴承出现故障时,会造成设备效率降低、安全事故甚至停产等重大损失。因此,及时准确地对轴承进行故障诊断至关重要。
传统的轴承故障诊断方法主要依靠人工经验,存在效率低、准确率不高、易受主观因素影响等缺点。近年来,随着深度学习技术的快速发展,基于深度学习的轴承故障诊断方法逐渐成为研究热点,并取得了显著成果。
双向时间卷积神经网络(BiTCN)作为一种新型深度学习模型,能够有效地提取时间序列数据的双向特征,在轴承故障诊断方面表现出巨大潜力。BiTCN模型通过双向卷积层,分别从时间序列数据的前向和后向提取特征,并将其整合到一起,从而获得更全面的时间特征信息。然而,BiTCN模型的超参数优化问题依然存在,影响着模型的诊断性能。
为了解决BiTCN模型的超参数优化问题,本文提出了一种基于蛇群优化算法(SO)优化BiTCN模型的轴承故障诊断方法。SO算法是一种新型的元启发式优化算法,具有全局寻优能力强、收敛速度快等优点,非常适用于超参数优化问题。该方法通过SO算法对BiTCN模型的超参数进行优化,从而提高模型的诊断精度。
2. 相关技术介绍
2.1 双向时间卷积神经网络(BiTCN)
BiTCN是一种基于时间卷积神经网络(TCN)的改进模型,其主要特点是加入了双向卷积层,能够从时间序列数据中提取更全面的特征信息。BiTCN模型的结构如图1所示:
图1 BiTCN模型结构图
BiTCN模型包含三个主要部分:
-
输入层:接收时间序列数据。
-
双向卷积层:分别从时间序列数据的前向和后向提取特征信息。
-
全连接层:将双向卷积层的输出整合到一起,并输出诊断结果。
2.2 蛇群优化算法(SO)
SO算法是一种新型的元启发式优化算法,其灵感来源于蛇群在觅食时的行为。SO算法中,每个蛇代表一个潜在的解,蛇群通过相互合作、竞争和学习来寻找最优解。SO算法具有以下特点:
-
全局寻优能力强:SO算法能够有效地避免陷入局部最优解。
-
收敛速度快:SO算法的收敛速度比其他元启发式优化算法更快。
-
易于实现:SO算法的代码实现相对简单。
3. 基于SO优化BiTCN的轴承故障诊断方法
本文提出的基于SO优化BiTCN的轴承故障诊断方法主要包括以下步骤:
-
数据采集和预处理:采集轴承运行时的振动信号数据,并对其进行预处理,例如降噪、特征提取等。
-
BiTCN模型构建:根据预处理后的数据构建BiTCN模型,包括确定模型的层数、卷积核大小、激活函数等参数。
-
SO算法优化:利用SO算法对BiTCN模型的超参数进行优化,找到最佳的参数组合,从而提高模型的诊断精度。
-
模型训练和测试:使用优化后的BiTCN模型对数据进行训练和测试,评估模型的性能。
4. Matlab代码实现
本文使用Matlab代码实现了基于SO优化BiTCN的轴承故障诊断方法,具体代码如下:
);
disp(confMat);
5. 实验结果分析
本文使用实际轴承故障数据集对该方法进行了测试,数据集包含正常状态和不同故障状态下的轴承振动信号。实验结果表明,该方法能够有效地提高BiTCN模型的诊断精度,与其他方法相比具有明显的优势。
6. 结论
本文提出了一种基于SO优化BiTCN模型的轴承故障诊断方法,并通过Matlab代码实现了该方法。实验结果表明,该方法能够有效地提高BiTCN模型的诊断精度,为轴承故障诊断提供了新的思路和方法。
7. 未来研究方向
-
研究更有效的超参数优化算法,进一步提高模型的诊断精度。
-
探索BiTCN模型的改进方法,例如加入注意力机制、残差连接等。
-
将该方法应用于其他类型机械设备的故障诊断。
-
📣 部分代码
%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_class = length(unique(res(:,end))); % 计算类别数
num_samples = size(res, 1); % 样本个数
kim = size(res, 2)-1; % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
⛳️ 运行结果
🔗 参考文献
[1] 刘震.智能BIT诊断方法研究及其在多电飞机电源系统中的应用[D].西北工业大学,2007.DOI:10.7666/d.y1189956.
[2] 温熙森,徐永成,易晓山.智能理论在BIT设计与故障诊断中的应用[J].国防科技大学学报, 1999, 21(1):5.DOI:10.1109/ISIC.1999.796628.
[3] 袁公萍,汤一平,韩旺明,等.基于深度卷积神经网络的车型识别方法[J].浙江大学学报:工学版, 2018, 52(4):9.DOI:10.3785/j.issn.1008-973X.2018.04.012.
[4] 朱家扬,蒋林,李远成,等.基于可重构阵列的CNN数据量化方法[J].计算机应用研究, 2024(004):041.
[5] 李大舟,于沛,高巍,等.基于社交媒体文本信息的金融时序预测[J].计算机工程与设计, 2021.DOI:10.16208/j.issn1000-7024.2021.08.018.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类