【故障诊断】基于蛇群优化算法SO优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

轴承作为机械设备中重要的传动部件,其运行状态直接影响着设备的整体性能和可靠性。近年来,随着工业自动化程度的不断提高,轴承故障诊断技术也得到了快速发展。双向时间卷积神经网络(BiTCN)作为一种新型深度学习模型,能够有效地提取时间序列数据的双向特征,在轴承故障诊断方面表现出巨大潜力。然而,BiTCN模型的超参数优化问题依然存在,影响着模型的诊断性能。针对这一问题,本文提出了一种基于蛇群优化算法(SO)优化BiTCN模型的轴承故障诊断方法。该方法利用SO算法的全局寻优能力对BiTCN模型的超参数进行优化,从而提高模型的诊断精度。本文通过Matlab代码实现该方法,并使用实际轴承故障数据集进行测试,验证了该方法的有效性。

关键词: 轴承故障诊断,双向时间卷积神经网络,蛇群优化算法,Matlab

1. 概述

轴承是机械设备中重要的传动部件,其状态直接影响着设备的整体性能和可靠性。当轴承出现故障时,会造成设备效率降低、安全事故甚至停产等重大损失。因此,及时准确地对轴承进行故障诊断至关重要。

传统的轴承故障诊断方法主要依靠人工经验,存在效率低、准确率不高、易受主观因素影响等缺点。近年来,随着深度学习技术的快速发展,基于深度学习的轴承故障诊断方法逐渐成为研究热点,并取得了显著成果。

双向时间卷积神经网络(BiTCN)作为一种新型深度学习模型,能够有效地提取时间序列数据的双向特征,在轴承故障诊断方面表现出巨大潜力。BiTCN模型通过双向卷积层,分别从时间序列数据的前向和后向提取特征,并将其整合到一起,从而获得更全面的时间特征信息。然而,BiTCN模型的超参数优化问题依然存在,影响着模型的诊断性能。

为了解决BiTCN模型的超参数优化问题,本文提出了一种基于蛇群优化算法(SO)优化BiTCN模型的轴承故障诊断方法。SO算法是一种新型的元启发式优化算法,具有全局寻优能力强、收敛速度快等优点,非常适用于超参数优化问题。该方法通过SO算法对BiTCN模型的超参数进行优化,从而提高模型的诊断精度。

2. 相关技术介绍

2.1 双向时间卷积神经网络(BiTCN)

BiTCN是一种基于时间卷积神经网络(TCN)的改进模型,其主要特点是加入了双向卷积层,能够从时间序列数据中提取更全面的特征信息。BiTCN模型的结构如图1所示:

图1 BiTCN模型结构图

BiTCN模型包含三个主要部分:

  • 输入层:接收时间序列数据。

  • 双向卷积层:分别从时间序列数据的前向和后向提取特征信息。

  • 全连接层:将双向卷积层的输出整合到一起,并输出诊断结果。

2.2 蛇群优化算法(SO)

SO算法是一种新型的元启发式优化算法,其灵感来源于蛇群在觅食时的行为。SO算法中,每个蛇代表一个潜在的解,蛇群通过相互合作、竞争和学习来寻找最优解。SO算法具有以下特点:

  • 全局寻优能力强:SO算法能够有效地避免陷入局部最优解。

  • 收敛速度快:SO算法的收敛速度比其他元启发式优化算法更快。

  • 易于实现:SO算法的代码实现相对简单。

3. 基于SO优化BiTCN的轴承故障诊断方法

本文提出的基于SO优化BiTCN的轴承故障诊断方法主要包括以下步骤:

  1. 数据采集和预处理:采集轴承运行时的振动信号数据,并对其进行预处理,例如降噪、特征提取等。

  2. BiTCN模型构建:根据预处理后的数据构建BiTCN模型,包括确定模型的层数、卷积核大小、激活函数等参数。

  3. SO算法优化:利用SO算法对BiTCN模型的超参数进行优化,找到最佳的参数组合,从而提高模型的诊断精度。

  4. 模型训练和测试:使用优化后的BiTCN模型对数据进行训练和测试,评估模型的性能。

4. Matlab代码实现

本文使用Matlab代码实现了基于SO优化BiTCN的轴承故障诊断方法,具体代码如下:

 

);
disp(confMat);

5. 实验结果分析

本文使用实际轴承故障数据集对该方法进行了测试,数据集包含正常状态和不同故障状态下的轴承振动信号。实验结果表明,该方法能够有效地提高BiTCN模型的诊断精度,与其他方法相比具有明显的优势。

6. 结论

本文提出了一种基于SO优化BiTCN模型的轴承故障诊断方法,并通过Matlab代码实现了该方法。实验结果表明,该方法能够有效地提高BiTCN模型的诊断精度,为轴承故障诊断提供了新的思路和方法。

7. 未来研究方向

  • 研究更有效的超参数优化算法,进一步提高模型的诊断精度。

  • 探索BiTCN模型的改进方法,例如加入注意力机制、残差连接等。

  • 将该方法应用于其他类型机械设备的故障诊断。

  • 📣 部分代码

%%  数据分析num_size = 0.7;                              % 训练集占数据集比例 outdim = 1;                                  % 最后一列为输出num_class = length(unique(res(:,end)));  % 计算类别数 num_samples = size(res, 1);                  % 样本个数kim = size(res, 2)-1;                  % 样本个数res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)num_train_s = round(num_size * num_samples); % 训练集样本个数f_ = size(res, 2) - outdim;                  % 输入特征维度

⛳️ 运行结果

🔗 参考文献

[1] 刘震.智能BIT诊断方法研究及其在多电飞机电源系统中的应用[D].西北工业大学,2007.DOI:10.7666/d.y1189956.

[2] 温熙森,徐永成,易晓山.智能理论在BIT设计与故障诊断中的应用[J].国防科技大学学报, 1999, 21(1):5.DOI:10.1109/ISIC.1999.796628.

[3] 袁公萍,汤一平,韩旺明,等.基于深度卷积神经网络的车型识别方法[J].浙江大学学报:工学版, 2018, 52(4):9.DOI:10.3785/j.issn.1008-973X.2018.04.012.

[4] 朱家扬,蒋林,李远成,等.基于可重构阵列的CNN数据量化方法[J].计算机应用研究, 2024(004):041.

[5] 李大舟,于沛,高巍,等.基于社交媒体文本信息的金融时序预测[J].计算机工程与设计, 2021.DOI:10.16208/j.issn1000-7024.2021.08.018.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值