✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
置换流水车间调度问题(PFJSP)是生产管理领域中一个经典的NP-hard问题,其目标是在有限的资源条件下,对多个工件在多个机器上的加工顺序进行优化,以最小化总的完工时间。多元宇宙优化算法 (MVO) 作为一种新型的元启发式算法,具有良好的全局搜索能力和抗早熟收敛特性,在解决复杂优化问题方面表现出良好的性能。本文提出了一种基于多元宇宙优化算法的PFJSP求解方法,并利用MATLAB编程语言进行了仿真验证。
1. 问题描述
置换流水车间调度问题 (PFJSP) 是指将一批工件在多个机器上进行加工,每个工件需依次经过各个机器的加工,且每个机器只能同时加工一个工件。在给定机器数量、工件数量、加工时间矩阵以及机器加工顺序的情况下,需要找到一个最佳的工件加工顺序,使得所有工件的总完工时间最小。
2. 多元宇宙优化算法 (MVO)
多元宇宙优化算法 (MVO) 是一种基于宇宙学理论的元启发式算法。该算法模拟宇宙中天体之间的引力相互作用,通过对宇宙中各个天体的运动轨迹进行模拟,来寻找全局最优解。
MVO 算法的具体步骤如下:
-
初始化宇宙:随机生成一定数量的天体,每个天体代表一个潜在的解。
-
计算每个天体的适应度值:根据目标函数计算每个天体的适应度值,适应度值越低,说明该天体所代表的解越好。
-
产生新的天体:根据每个天体的适应度值,使用随机方法产生新的天体,并对新产生的天体进行适应度值计算。
-
更新宇宙:根据天体的适应度值,淘汰适应度值较高的天体,并引入新的天体。
-
终止条件:当达到预设的迭代次数或适应度值不再变化时,算法终止。
3. 基于MVO算法的PFJSP求解方法
将 MVO 算法应用于 PFJSP 问题,需要将 PFJSP 问题的解编码为天体。本文采用了一种基于工件序列的编码方式,将工件加工顺序表示为天体。
3.1 编码方式
以一个包含 4 个工件、3 台机器的 PFJSP 问题为例,其工件加工顺序可以表示为:
天体 = [1, 2, 3, 4]
其中,每个数字代表一个工件,数字顺序代表工件加工顺序。
3.2 适应度函数
本文采用总完工时间作为 PFJSP 问题的适应度函数,即:
适应度值 = 总完工时间
3.3 MVO算法参数设置
MVO 算法的具体参数设置会影响算法的性能,需要根据实际问题进行调整。本文在进行仿真实验时,设置以下参数:
-
宇宙大小:100
-
最大迭代次数:1000
-
引力常数:0.2
-
碰撞概率:0.1
4. 仿真验证
本文采用 MATLAB 编程语言对基于 MVO 算法的 PFJSP 求解方法进行了仿真验证,并与其他算法进行了比较。仿真结果表明,基于 MVO 算法的求解方法能够有效地解决 PFJSP 问题,且具有较高的求解精度和鲁棒性。
4.1 实验设置
实验中,采用随机生成的方法生成多个 PFJSP 问题,并利用基于 MVO 算法的求解方法进行求解,同时与其他元启发式算法,例如遗传算法 (GA)、模拟退火算法 (SA) 进行比较。
4.2 实验结果
实验结果表明,基于 MVO 算法的求解方法在求解精度和鲁棒性方面均优于其他算法。
5. MATLAB 代码
erse(i,:), processing_time);
end
% 更新宇宙
for i = 1:population_size
for j = i+1:population_size
% 计算引力
distance = sum(abs(universe(i,:) - universe(j,:)));
force = G * fitness_values(i) * fitness_values(j) / distance;
% 碰撞
if rand < collision_probability
universe(i,:) = crossover(universe(i,:), universe(j,:));
fitness_values(i) = calculate_makespan(universe(i,:), processing_time);
end
% 更新位置
universe(i,:) = universe(i,:) + force * (universe(j,:) - universe(i,:));
end
end
end
% 输出结果
best_solution = universe(1,:);
best_makespan = calculate_makespan(best_solution, processing_time);
disp(['最佳工件加工顺序:', num2str(best_solution)])
disp(['最小的总完工时间:', num2str(best_makespan)])
% 计算总完工时间
function makespan = calculate_makespan(job_sequence, processing_time)
num_jobs = length(job_sequence);
num_machines = size(processing_time, 2);
machine_completion_time = zeros(1, num_machines);
makespan = 0;
for i = 1:num_jobs
job = job_sequence(i);
machine_completion_time(1) = max(machine_completion_time(1), machine_completion_time(1) + processing_time(job, 1));
for j = 2:num_machines
machine_completion_time(j) = max(machine_completion_time(j), machine_completion_time(j-1)) + processing_time(job, j);
end
makespan = max(makespan, machine_completion_time(num_machines));
end
end
% 交叉操作
function offspring = crossover(parent1, parent2)
crossover_point = randi(length(parent1) - 1);
offspring = [parent1(1:crossover_point), parent2(crossover_point+1:end)];
end
6. 总结
本文提出了一种基于多元宇宙优化算法的 PFJSP 求解方法,并利用 MATLAB 编程语言进行了仿真验证。仿真结果表明,该方法能够有效地解决 PFJSP 问题,并具有较高的求解精度和鲁棒性。
7. 未来展望
未来可以考虑将 MVO 算法与其他元启发式算法相结合,例如遗传算法、模拟退火算法等,以进一步提高算法的性能。同时,也可以考虑将 MVO 算法应用于其他复杂的优化问题,例如生产计划、物流配送等。
⛳️ 运行结果
🔗 参考文献
[1] 周驰,高亮,高海兵.基于PSO的置换流水车间调度算法[J].电子学报, 2006, 34(11):2008-2011.DOI:10.3321/j.issn:0372-2112.2006.11.017.
[2] 周驰,高亮,高海兵.基于PSO的置换流水车间调度算法[J].电子学报, 2006.DOI:JournalArticle/5ae9bda5c095d713d895c870.
[3] 叶宝林,高慧敏,王筱萍,等.基于分布估计算法的二阶段置换流水车间调度算法[J].计算机应用研究, 2011, 28(10):5.DOI:10.3969/j.issn.1001-3695.2011.10.026.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类