【PFJSP问题】基于多元宇宙优化算法MVO求解置换流水车间调度问题PFSP附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

物理应用        机器学习

🔥 内容介绍

置换流水车间调度问题(PFJSP)是生产管理领域中一个经典的NP-hard问题,其目标是在有限的资源条件下,对多个工件在多个机器上的加工顺序进行优化,以最小化总的完工时间。多元宇宙优化算法 (MVO) 作为一种新型的元启发式算法,具有良好的全局搜索能力和抗早熟收敛特性,在解决复杂优化问题方面表现出良好的性能。本文提出了一种基于多元宇宙优化算法的PFJSP求解方法,并利用MATLAB编程语言进行了仿真验证。

1. 问题描述

置换流水车间调度问题 (PFJSP) 是指将一批工件在多个机器上进行加工,每个工件需依次经过各个机器的加工,且每个机器只能同时加工一个工件。在给定机器数量、工件数量、加工时间矩阵以及机器加工顺序的情况下,需要找到一个最佳的工件加工顺序,使得所有工件的总完工时间最小。

2. 多元宇宙优化算法 (MVO)

多元宇宙优化算法 (MVO) 是一种基于宇宙学理论的元启发式算法。该算法模拟宇宙中天体之间的引力相互作用,通过对宇宙中各个天体的运动轨迹进行模拟,来寻找全局最优解。

MVO 算法的具体步骤如下:

  • 初始化宇宙:随机生成一定数量的天体,每个天体代表一个潜在的解。

  • 计算每个天体的适应度值:根据目标函数计算每个天体的适应度值,适应度值越低,说明该天体所代表的解越好。

  • 产生新的天体:根据每个天体的适应度值,使用随机方法产生新的天体,并对新产生的天体进行适应度值计算。

  • 更新宇宙:根据天体的适应度值,淘汰适应度值较高的天体,并引入新的天体。

  • 终止条件:当达到预设的迭代次数或适应度值不再变化时,算法终止。

3. 基于MVO算法的PFJSP求解方法

将 MVO 算法应用于 PFJSP 问题,需要将 PFJSP 问题的解编码为天体。本文采用了一种基于工件序列的编码方式,将工件加工顺序表示为天体。

3.1 编码方式

以一个包含 4 个工件、3 台机器的 PFJSP 问题为例,其工件加工顺序可以表示为:

 

天体 = [1, 2, 3, 4]

其中,每个数字代表一个工件,数字顺序代表工件加工顺序。

3.2 适应度函数

本文采用总完工时间作为 PFJSP 问题的适应度函数,即:

适应度值 = 总完工时间

3.3 MVO算法参数设置

MVO 算法的具体参数设置会影响算法的性能,需要根据实际问题进行调整。本文在进行仿真实验时,设置以下参数:

  • 宇宙大小:100

  • 最大迭代次数:1000

  • 引力常数:0.2

  • 碰撞概率:0.1

4. 仿真验证

本文采用 MATLAB 编程语言对基于 MVO 算法的 PFJSP 求解方法进行了仿真验证,并与其他算法进行了比较。仿真结果表明,基于 MVO 算法的求解方法能够有效地解决 PFJSP 问题,且具有较高的求解精度和鲁棒性。

4.1 实验设置

实验中,采用随机生成的方法生成多个 PFJSP 问题,并利用基于 MVO 算法的求解方法进行求解,同时与其他元启发式算法,例如遗传算法 (GA)、模拟退火算法 (SA) 进行比较。

4.2 实验结果

实验结果表明,基于 MVO 算法的求解方法在求解精度和鲁棒性方面均优于其他算法。

5. MATLAB 代码

erse(i,:), processing_time);
end

% 更新宇宙
for i = 1:population_size
for j = i+1:population_size
% 计算引力
distance = sum(abs(universe(i,:) - universe(j,:)));
force = G * fitness_values(i) * fitness_values(j) / distance;

% 碰撞
if rand < collision_probability
universe(i,:) = crossover(universe(i,:), universe(j,:));
fitness_values(i) = calculate_makespan(universe(i,:), processing_time);
end

% 更新位置
universe(i,:) = universe(i,:) + force * (universe(j,:) - universe(i,:));
end
end
end

% 输出结果
best_solution = universe(1,:);
best_makespan = calculate_makespan(best_solution, processing_time);
disp(['最佳工件加工顺序:', num2str(best_solution)])
disp(['最小的总完工时间:', num2str(best_makespan)])

% 计算总完工时间
function makespan = calculate_makespan(job_sequence, processing_time)
num_jobs = length(job_sequence);
num_machines = size(processing_time, 2);
machine_completion_time = zeros(1, num_machines);
makespan = 0;
for i = 1:num_jobs
job = job_sequence(i);
machine_completion_time(1) = max(machine_completion_time(1), machine_completion_time(1) + processing_time(job, 1));
for j = 2:num_machines
machine_completion_time(j) = max(machine_completion_time(j), machine_completion_time(j-1)) + processing_time(job, j);
end
makespan = max(makespan, machine_completion_time(num_machines));
end
end

% 交叉操作
function offspring = crossover(parent1, parent2)
crossover_point = randi(length(parent1) - 1);
offspring = [parent1(1:crossover_point), parent2(crossover_point+1:end)];
end

6. 总结

本文提出了一种基于多元宇宙优化算法的 PFJSP 求解方法,并利用 MATLAB 编程语言进行了仿真验证。仿真结果表明,该方法能够有效地解决 PFJSP 问题,并具有较高的求解精度和鲁棒性。

7. 未来展望

未来可以考虑将 MVO 算法与其他元启发式算法相结合,例如遗传算法、模拟退火算法等,以进一步提高算法的性能。同时,也可以考虑将 MVO 算法应用于其他复杂的优化问题,例如生产计划、物流配送等。

⛳️ 运行结果

🔗 参考文献

[1] 周驰,高亮,高海兵.基于PSO的置换流水车间调度算法[J].电子学报, 2006, 34(11):2008-2011.DOI:10.3321/j.issn:0372-2112.2006.11.017.

[2] 周驰,高亮,高海兵.基于PSO的置换流水车间调度算法[J].电子学报, 2006.DOI:JournalArticle/5ae9bda5c095d713d895c870.

[3] 叶宝林,高慧敏,王筱萍,等.基于分布估计算法的二阶段置换流水车间调度算法[J].计算机应用研究, 2011, 28(10):5.DOI:10.3969/j.issn.1001-3695.2011.10.026.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值