【车间调度】基于布谷鸟优化算法CS求解零空闲流水车间调度问题NIFSP附Matlab代码

✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

摘要: 零空闲流水车间调度问题(NIFSP)作为一种重要的调度问题,广泛存在于制造业、生产计划等领域。该问题要求在有限的机器资源下,完成所有任务且保持零空闲时间,目标是优化总完工时间。布谷鸟优化算法(CS)因其简单高效的特点,近年来在解决各种优化问题中得到广泛应用。本文针对NIFSP问题,提出了一种基于布谷鸟优化算法的求解方法,并使用Matlab编程语言进行实现和仿真验证。

1. 问题描述

零空闲流水车间调度问题(NIFSP)可描述如下:

  • 机器: N个相同的机器并联工作,每个机器均可加工所有工件。

  • 任务: M个任务需要在流水线上加工,每个任务需要经过所有机器进行加工。

  • 加工时间: 每个任务在每个机器上的加工时间已知。

  • 约束: 每个任务必须在所有机器上完成加工,且各机器之间不能有空闲时间。

  • 目标: 最小化所有任务的总完工时间。

2. 布谷鸟优化算法

布谷鸟优化算法(CS)是一种模拟自然界布谷鸟寄生繁殖行为的元启发式算法,其主要思想如下:

  • 巢穴: 算法中每个解对应一个巢穴。

  • 布谷鸟: 算法中的解被视为布谷鸟。

  • 寄生: 布谷鸟会将自己的蛋产到其他鸟的巢穴中,并由其他鸟孵化。

  • 发现: 巢穴主人有概率发现布谷鸟的蛋,并将其丢弃或建造新的巢穴。

  • 更新: 布谷鸟的蛋会随着时间的推移而进化,并不断优化。

3. 基于CS的NIFSP求解方法

针对NIFSP问题,本文将CS算法应用于求解该问题,具体步骤如下:

  • 初始化: 随机生成一定数量的初始解,每个解对应一个任务序列。

  • 适应度评价: 每个解根据其对应的任务序列,计算其总完工时间,作为适应度值。

  • 寄生: 随机选择一定比例的解,并根据莱维飞行机制产生新的解。

  • 发现: 根据预设概率,发现并丢弃部分劣质解,并生成新的解。

  • 更新: 根据适应度值,更新解的种群,保留优质解,并不断重复上述步骤,直至满足停止条件。

4. Matlab代码实现

使用Matlab语言对上述算法进行实现,并对结果进行仿真验证。

 


% 寄生
new_solutions = generate_new_solutions(population, processing_time);

% 发现
discovered_solutions = discover_solutions(population, new_solutions);

% 更新种群
population = update_population(population, new_solutions, discovered_solutions);
end

% 结果输出
best_solution = population(1,:);
best_fitness = calculate_fitness(best_solution, processing_time);

% 绘制结果
figure;
plot(best_fitness);
xlabel('Generation');
ylabel('Fitness');
title('Fitness Evolution');

5. 仿真结果

通过仿真实验,可以得到以下结论:

  • 基于CS算法的NIFSP求解方法能够有效地找到较优解。

  • 该方法具有较强的鲁棒性,能够在不同参数设定下稳定收敛。

  • 与其他启发式算法相比,该方法具有较高的效率。

6. 总结与展望

本文针对零空闲流水车间调度问题,提出了一种基于布谷鸟优化算法的求解方法,并使用Matlab进行实现和仿真验证。结果表明,该方法能够有效地解决NIFSP问题。未来可以继续探索其他元启发式算法或改进CS算法

📣 部分代码

⛳️ 运行结果

🔗 参考文献

[1] 李杰李艳武.变量块内部迭代算法求解零空闲流水车间问题[J].计算机应用研究, 2022, 39(12):3667-3672.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值