✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要: 零空闲流水车间调度问题(NIFSP)作为一种重要的调度问题,广泛存在于制造业、生产计划等领域。该问题要求在有限的机器资源下,完成所有任务且保持零空闲时间,目标是优化总完工时间。布谷鸟优化算法(CS)因其简单高效的特点,近年来在解决各种优化问题中得到广泛应用。本文针对NIFSP问题,提出了一种基于布谷鸟优化算法的求解方法,并使用Matlab编程语言进行实现和仿真验证。
1. 问题描述
零空闲流水车间调度问题(NIFSP)可描述如下:
-
机器: N个相同的机器并联工作,每个机器均可加工所有工件。
-
任务: M个任务需要在流水线上加工,每个任务需要经过所有机器进行加工。
-
加工时间: 每个任务在每个机器上的加工时间已知。
-
约束: 每个任务必须在所有机器上完成加工,且各机器之间不能有空闲时间。
-
目标: 最小化所有任务的总完工时间。
2. 布谷鸟优化算法
布谷鸟优化算法(CS)是一种模拟自然界布谷鸟寄生繁殖行为的元启发式算法,其主要思想如下:
-
巢穴: 算法中每个解对应一个巢穴。
-
布谷鸟: 算法中的解被视为布谷鸟。
-
寄生: 布谷鸟会将自己的蛋产到其他鸟的巢穴中,并由其他鸟孵化。
-
发现: 巢穴主人有概率发现布谷鸟的蛋,并将其丢弃或建造新的巢穴。
-
更新: 布谷鸟的蛋会随着时间的推移而进化,并不断优化。
3. 基于CS的NIFSP求解方法
针对NIFSP问题,本文将CS算法应用于求解该问题,具体步骤如下:
-
初始化: 随机生成一定数量的初始解,每个解对应一个任务序列。
-
适应度评价: 每个解根据其对应的任务序列,计算其总完工时间,作为适应度值。
-
寄生: 随机选择一定比例的解,并根据莱维飞行机制产生新的解。
-
发现: 根据预设概率,发现并丢弃部分劣质解,并生成新的解。
-
更新: 根据适应度值,更新解的种群,保留优质解,并不断重复上述步骤,直至满足停止条件。
4. Matlab代码实现
使用Matlab语言对上述算法进行实现,并对结果进行仿真验证。
% 寄生
new_solutions = generate_new_solutions(population, processing_time);
% 发现
discovered_solutions = discover_solutions(population, new_solutions);
% 更新种群
population = update_population(population, new_solutions, discovered_solutions);
end
% 结果输出
best_solution = population(1,:);
best_fitness = calculate_fitness(best_solution, processing_time);
% 绘制结果
figure;
plot(best_fitness);
xlabel('Generation');
ylabel('Fitness');
title('Fitness Evolution');
5. 仿真结果
通过仿真实验,可以得到以下结论:
-
基于CS算法的NIFSP求解方法能够有效地找到较优解。
-
该方法具有较强的鲁棒性,能够在不同参数设定下稳定收敛。
-
与其他启发式算法相比,该方法具有较高的效率。
6. 总结与展望
本文针对零空闲流水车间调度问题,提出了一种基于布谷鸟优化算法的求解方法,并使用Matlab进行实现和仿真验证。结果表明,该方法能够有效地解决NIFSP问题。未来可以继续探索其他元启发式算法或改进CS算法
📣 部分代码
⛳️ 运行结果
🔗 参考文献
[1] 李杰李艳武.变量块内部迭代算法求解零空闲流水车间问题[J].计算机应用研究, 2022, 39(12):3667-3672.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类