✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
摘要: 随着全球能源结构转型和环境保护意识的日益增强,以风力发电和光伏发电为代表的可再生能源发电技术得到了迅猛发展。然而,风电和光伏发电具有间歇性、波动性和随机性的特点,给电力系统的稳定运行带来严峻挑战。储能技术作为一种有效的能量储存和释放手段,能够平抑可再生能源发电的波动性,提高电力系统的可靠性和灵活性。本文聚焦于风电、光伏与储能(包含电池储能和废弃矿井小型抽水蓄能)互补调度运行策略的研究,探讨如何通过优化调度策略,最大限度地发挥各种储能技术的优势,实现可再生能源发电的平滑输出和电网的稳定运行,为构建清洁、高效、安全的现代电力系统提供理论支撑。
关键词: 风电;光伏;储能;电池储能;抽水蓄能;互补调度;电力系统
1. 引言
全球气候变化和环境污染问题日益严重,促使各国政府积极推动能源转型,大力发展可再生能源。风电和光伏发电作为最具发展潜力的可再生能源发电技术,在全球范围内得到了广泛应用。然而,风电和光伏发电的输出功率受自然条件影响显著,具有间歇性、波动性和随机性的特点,大规模接入电网会对电力系统的稳定运行造成冲击,甚至引发安全事故。
为解决上述问题,储能技术应运而生。储能技术能够将电能以特定形式储存起来,并在需要时释放,从而实现对电力系统功率的调节,提高电网的灵活性和可靠性。目前,常见的储能技术包括抽水蓄能、电化学储能(如锂电池)、压缩空气储能、飞轮储能等。
本文重点关注风电、光伏与储能互补调度运行策略的研究,旨在探讨如何通过优化调度,有效利用各种储能技术的特性,实现可再生能源发电的平滑输出,降低其对电网的影响,提高电力系统的整体运行效率和稳定性。特别是针对废弃矿井小型抽水蓄能这种具有潜在成本优势的新型储能技术,进行深入分析和研究,为其在电力系统中的应用提供理论依据。
2. 风电、光伏发电的特性分析及其对电力系统的影响
2.1 风电发电的特性分析
风力发电的功率输出与风速密切相关,呈现出间歇性和波动性。风速的变化直接影响风电机组的出力,导致电力系统的功率波动。具体表现为:
- 间歇性:
风力资源受季节、天气等因素的影响,具有明显的间歇性特征。在无风或低风速条件下,风电机组的出力大幅下降甚至停机,导致电力供应不稳定。
- 波动性:
风速的快速变化会导致风电机组的出力产生剧烈波动,增加电力系统频率和电压的调整难度。
- 随机性:
风速的变化难以准确预测,导致风电发电的功率输出具有一定的随机性,给电力系统的调度带来挑战。
2.2 光伏发电的特性分析
光伏发电的功率输出与太阳辐照度密切相关,同样具有间歇性和波动性。太阳辐照度受日照强度、天气状况(如云层遮挡)等因素的影响,导致光伏发电的功率输出不稳定。具体表现为:
- 间歇性:
光伏发电受昼夜交替影响,只能在白天发电。阴天或多云天气也会显著降低光伏发电的功率输出。
- 波动性:
太阳辐照度的快速变化(如云层快速移动)会导致光伏发电的功率输出产生剧烈波动。
- 季节性:
不同季节的太阳辐照度存在差异,导致光伏发电的功率输出呈现季节性变化。
2.3 风电、光伏发电对电力系统的影响
大规模风电和光伏发电接入电网会对电力系统产生诸多影响,主要包括:
- 增加电网调峰压力:
风电和光伏发电的间歇性和波动性要求电力系统具备更强的调峰能力,以应对可再生能源发电出力变化带来的功率缺口或过剩。
- 降低电网频率稳定性:
风电和光伏发电的功率波动会影响电力系统的频率稳定,增加频率调整的难度。
- 影响电网电压稳定性:
风电和光伏发电的功率波动会影响电网的电压稳定,需要采取有效的电压调节措施。
- 增加电网阻塞风险:
风电和光伏发电的大规模接入可能会导致电网传输线路拥堵,增加电网阻塞风险。
⛳️ 运行结果
🔗 参考文献
[1] 宗瑾.含风电和抽水蓄能的电力系统二阶段发电调度模型及算法研究[D].华北电力大学;华北电力大学(北京),2012.DOI:10.7666/d.y2140286. [2] 黄庶,林舜江,刘明波.含风电场和抽水蓄能电站的多目标安全约束动态优化调度[J].中国电机工程学报, 2016, 36(1):10.DOI:CNKI:SUN:ZGDC.0.2016-01-015. [3] 鹿优,鹿存鹏,徐伟,等.含抽水蓄能电站的多能互补微网系统设计与研究[J].山东电力技术, 2023, 50(5):34-40.DOI:10.20097/j.cnki.issn1007-9904.2023.05.006.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇