作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
轴承作为旋转机械的关键组成部分,其健康状况直接影响设备的运行稳定性和安全性。一旦发生故障,轻则导致停机检修,重则可能引发灾难性事故。因此,对轴承进行有效且准确的故障诊断具有至关重要的意义。传统的轴承故障诊断方法主要依赖于经验丰富的工程师进行人工判断,效率低下且容易受到主观因素影响。随着现代传感技术、信号处理理论和人工智能的快速发展,基于振动信号的自动化故障诊断技术已成为研究热点。
轴承在正常运行时产生的振动信号通常呈现为平稳或准平稳的状态,而当发生故障时,由于滚子、内圈、外圈或保持架的缺陷撞击,会产生一系列冲击信号。这些冲击信号往往具有非线性、非平稳的特性,其能量在时间和频率上均有分布。因此,传统的基于傅里叶变换(FFT)的频域分析方法,由于其仅能获取信号的全局频率信息,无法捕捉故障信号在时间上的瞬时特性,在处理非平稳信号时存在局限性。时域分析虽然能够反映信号在时间上的变化,但缺乏频率信息,难以区分不同故障类型。为了更有效地分析轴承故障信号,揭示其时变频率特性,时频分析方法应运而生。
时频分析旨在将信号在时间和频率两个维度上进行分解,生成时频分布,从而直观地展示信号的瞬时频率成分随时间的变化规律。通过分析时频分布的特征,可以有效地识别和区分不同类型的轴承故障。常见的时频分析方法包括短时傅里叶变换(STFT)、小波变换(WT)、Hilbert-Huang变换(HHT)以及各类优化的时频表示(如Wigner-Ville分布、同步压缩变换等)。这些方法各有优劣,在轴承故障诊断领域的应用也日益广泛。
然而,传统的时频分析方法在处理复杂轴承故障信号时仍面临挑战。例如,STFT受限于固定的窗口函数,存在时频分辨率相互制约的问题;WT虽然具有多分辨率分析能力,但基小波的选择对分析结果影响较大;HHT虽然适用于处理非线性非平稳信号,但存在模态混叠问题。为了提高轴承故障诊断的准确性和鲁棒性,研究人员致力于开发更加集中、高分辨率的时频分析方法。本文将对用于轴承故障诊断的集中时频分析方法进行深入研究,探讨其原理、优势、挑战以及未来发展趋势。
轴承故障信号的特点与时频分析的需求
轴承的故障类型多种多样,包括内圈故障、外圈故障、滚子故障、保持架故障等。不同类型的故障会在轴承运转过程中产生具有特定周期性和幅值的冲击。这些冲击信号在时域表现为尖锐的脉冲,在频域表现为一系列故障特征频率及其谐波。然而,由于载荷变化、转速波动、噪声干扰以及信号在传播路径上的衰减和畸变,实际采集到的轴承故障信号往往非常复杂。
轴承故障信号的典型特征包括:
- 非平稳性:
故障冲击是瞬时发生的,信号的频谱成分随时间变化。
- 周期性:
对于内圈、外圈和滚子故障,冲击的发生与轴承的旋转和滚子的运动有关,具有一定的周期性。这些周期性对应的频率被称为故障特征频率。
- 冲击性:
故障引起的振动表现为突发性的冲击信号。
- 弱故障信号被强背景噪声淹没:
在设备正常运行的强噪声背景下,早期故障引起的弱信号很难被有效提取和识别。
- 多源信号叠加:
实际采集到的信号往往是轴承故障信号与其他部件(如齿轮、电机)的振动信号以及环境噪声的叠加。
针对这些复杂的信号特性,轴承故障诊断对时频分析提出了更高的要求。理想的时频分析方法应具备以下特点:
- 高时频分辨率:
能够清晰地分辨出故障冲击的发生时间和其对应的频率成分,避免模糊和混叠。
- 良好的能量集中性:
将信号的能量有效地聚集在时频平面上的少量区域内,便于故障特征的提取。
- 抑制交叉项干扰:
对于双线性或二次型时频表示,需要有效抑制由于信号不同成分之间的相互作用而产生的虚假分量(交叉项)。
- 对噪声的鲁棒性:
在噪声环境下,能够有效提取故障特征,不受噪声的严重干扰。
- 计算效率高:
能够满足实时或准实时诊断的需求。
集中时频分析方法及其在轴承故障诊断中的应用
为了满足轴承故障诊断对高分辨率、高能量集中性的时频分析需求,研究人员提出了多种集中时频分析方法。这些方法通常通过对传统时频分析方法进行改进或结合其他信号处理技术来实现。以下将介绍几种常见的集中时频分析方法及其在轴承故障诊断中的应用:
3.1 基于重排的时频分析
基于重排的时频分析(Reassigned Time-Frequency Analysis)是一种通过重新分配时频能量来提高时频分布集中性的技术。其基本思想是将原始时频表示中的能量中心移动到瞬时频率和瞬时群时所在的点。常见的基于重排的时频分析方法包括:
- 时频重排(Time-Frequency Reassignment):
该方法通过计算瞬时频率和瞬时群时来对STFT或Wigner-Ville分布等时频表示进行重排。重排后的时频分布能够更好地聚焦信号的能量,提高时频分辨率。
- 同步压缩变换(Synchrosqueezing Transform, SST):
SST是一种基于小波变换的重排技术。它通过对小波变换系数在频率方向进行重排,将能量压缩到瞬时频率曲线上。SST能够有效地处理多分量信号,并具有良好的能量集中性和抗噪性能。
在轴承故障诊断中的应用:
基于重排的时频分析方法在轴承故障诊断中展现出了良好的效果。通过对轴承振动信号进行重排时频分析,可以获得更加清晰的故障特征频率轨迹,便于人工识别或后续自动特征提取。例如,研究表明,SST能够有效地从复杂的背景噪声中提取出早期轴承故障的弱冲击信号,并清晰地显示故障特征频率的谱线。然而,重排方法也可能引入一些新的问题,例如对于非线性调频信号,重排可能会产生不连续的谱线。
3.2 基于稀疏分解的时频分析
基于稀疏分解的时频分析方法利用信号在某些特定字典下具有稀疏表示的特性,将信号分解为少量原子或成分的线性组合,每个原子具有局部化的时频特性。通过对分解得到的原子进行时频分析,可以得到更加集中和清晰的时频表示。常见的稀疏分解方法包括:
- 匹配追踪(Matching Pursuit, MP):
MP是一种迭代算法,每次从过完备字典中选择与残差信号最匹配的原子,并将其从信号中减去,直到残差达到预设阈值。
- 基追踪(Basis Pursuit, BP):
BP通过求解一个L1范数最小化问题来寻找信号在字典下的稀疏表示。
- 稀疏成分分析(Sparse Component Analysis, SCA):
SCA旨在将混合信号分解为独立的稀疏分量。
在轴承故障诊断中的应用:
基于稀疏分解的方法能够有效地将轴承故障信号从背景噪声和干扰信号中分离出来,并对分解得到的故障成分进行时频分析,从而获得更加纯净和集中的故障特征。例如,利用MP或BP算法将轴承振动信号分解为一系列冲击原子,然后对这些原子进行时频分析,可以清晰地显示故障冲击的发生时间和频率成分。这种方法对于处理弱故障信号和多分量信号具有优势。然而,选择合适的过完备字典是该方法的关键和难点。
3.3 基于压缩感知的时频分析
压缩感知(Compressed Sensing, CS)理论表明,如果信号在某个变换域下具有稀疏性,则可以通过少量测量值对其进行精确重构。将压缩感知理论与时频分析相结合,可以在较低采样率下采集信号,并通过重构得到高分辨率的时频分布。
在轴承故障诊断中的应用:
基于压缩感知的时频分析方法为轴承故障诊断提供了一种新的思路,尤其适用于需要降低数据采集和传输成本的应用场景。通过设计合适的感知矩阵,对轴承振动信号进行压缩采样,然后利用压缩感知重构算法恢复信号的时频分布,可以有效降低对采样硬件的要求,同时保持较高的诊断精度。然而,如何设计高效的感知矩阵以及如何处理实际应用中的噪声和非理想稀疏性是需要进一步研究的问题。
3.4 基于深度学习的时频分析
近年来,深度学习在信号处理和模式识别领域取得了显著进展。将深度学习技术应用于时频分析,可以自动学习信号的时频特征,并进行故障诊断。
在轴承故障诊断中的应用:
深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)等,可以直接以原始振动信号或其时频表示作为输入,通过网络的学习,自动提取故障特征并进行分类。一些研究将时频分布图像作为CNN的输入,利用CNN的图像特征提取能力进行故障诊断。另一些研究则直接将原始信号输入到端到端的深度学习模型中,由模型自动学习时频特征。这种方法具有强大的特征学习能力,能够处理复杂的非线性关系,但需要大量的标注数据进行训练,且模型的解释性较差。
4. 集中时频分析在轴承故障诊断中的挑战与展望
尽管集中时频分析方法在轴承故障诊断中取得了显著进展,但仍面临一些挑战:
- 方法选择与参数优化:
不同的集中时频分析方法对信号特性和应用场景具有不同的适用性,如何选择最合适的方法并对其参数进行优化是实际应用中的难题。
- 计算复杂度:
一些集中时频分析方法,特别是基于迭代优化的方法,计算量较大,难以满足实时诊断的需求。
- 抗噪性能:
在强噪声环境下,集中时频分析方法的性能可能受到影响,如何进一步提高方法的抗噪能力是重要的研究方向。
- 对复杂工况的适应性:
实际设备运行工况复杂多变,包括变载荷、变转速等,如何使集中时频分析方法能够适应这些复杂工况是一个挑战。
- 可解释性:
深度学习等黑箱模型在故障诊断中虽然取得了不错的性能,但其决策过程缺乏可解释性,难以获得工程师的信任。
未来,集中时频分析在轴承故障诊断领域的研究方向可以集中在以下几个方面:
- 多方法融合:
结合不同集中时频分析方法的优点,形成更加鲁棒和高效的诊断方法。
- 自适应时频分析:
开发能够根据信号特性和工况自适应调整参数的时频分析方法。
- 低计算复杂度算法:
研究更加高效的算法,满足实时或准实时诊断的需求。
- 结合机器学习和深度学习:
将集中时频分析方法与机器学习、深度学习技术深度融合,实现自动化和智能化的故障诊断。
- 可解释性研究:
探索如何提高基于深度学习等方法的诊断可解释性,增强工程师对诊断结果的信任。
- 在不同工况下的应用研究:
将集中时频分析方法应用于变载荷、变转速等复杂工况下的轴承故障诊断,验证其有效性。
- 数据驱动的时频分析:
利用大数据和数据挖掘技术,从海量轴承振动数据中学习故障的时频特征,指导时频分析方法的改进和应用。
结论
轴承故障诊断是保证设备安全稳定运行的关键环节。传统的时频分析方法在处理轴承故障信号时存在局限性,而集中时频分析方法通过提高时频分布的能量集中性和分辨率,为轴承故障的准确诊断提供了有力的工具。本文对用于轴承故障诊断的集中时频分析方法进行了研究,包括基于重排、稀疏分解、压缩感知和深度学习等方法。这些方法各有优势,在不同的应用场景下展现出良好的诊断效果。
然而,集中时频分析在轴承故障诊断中仍面临挑战,包括方法选择与参数优化、计算复杂度、抗噪性能以及对复杂工况的适应性等。未来的研究应致力于克服这些挑战,开发更加鲁棒、高效和智能化的集中时频分析方法,并将其与先进的机器学习和深度学习技术深度融合,从而提高轴承故障诊断的准确性和可靠性,为工业设备的预测性维护提供有力支撑。随着传感技术、计算能力以及信号处理理论的不断发展,集中时频分析在轴承故障诊断领域的应用前景将更加广阔。
⛳️ 运行结果
🔗 参考文献
[1] 曾芸.基于小波分析的滚动轴承故障诊断方法研究[D].南昌大学[2025-05-02].DOI:10.7666/d.y1152129.
[2] 吕琛.基于噪声分析的内燃机主轴承状态监测与故障诊断[D].大连理工大学,2002.DOI:10.7666/d.y638156.
[3] 姜绍俊.小波变换在轴承故障诊断中的研究[J].电脑知识与技术:学术版, 2009(6X):2.DOI:10.3969/j.issn.1009-3044.2009.18.171.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇