【温度】双温度模型计算晶格和电子热扩散附Matlab仿真

✅作者简介:热爱数据处理、建模、算法设计Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

摘要: 本文探讨了双温度模型 (Two-Temperature Model, TTM) 在计算晶格和电子热扩散过程中的应用。双温度模型通过分别描述电子和晶格的温度演化,能够更准确地捕捉超快激光与材料相互作用过程中发生的非平衡热传导现象。本文首先介绍了双温度模型的基本理论框架,包括其 governing equations 及其中的关键参数,例如电子-声子耦合系数。随后,详细阐述了利用 Matlab 仿真求解双温度模型方程组的方法,包括数值方法的选择、边界条件的设定以及结果的分析。最后,通过具体的仿真案例,展示了双温度模型的预测结果,并与实验结果进行了比较,验证了模型的有效性和适用性。

关键词: 双温度模型,热扩散,晶格温度,电子温度,Matlab仿真,非平衡热传导

1. 引言

超快激光与材料相互作用是一个复杂的过程,涉及到多种物理机制,其中热传导扮演着至关重要的角色。传统的单温度模型假设电子和晶格始终保持热平衡,这在许多情况下,特别是对于超短脉冲激光激发的场景,是不准确的。由于激光的超快作用,电子系统会首先吸收能量并迅速升温,而晶格温度的升高则滞后于电子温度。这种电子和晶格温度之间的非平衡状态,使得双温度模型成为更精确描述超快热传导过程的必要工具。双温度模型通过建立电子和晶格各自的能量守恒方程,分别追踪电子和晶格的温度演化,从而更准确地反映材料在超快激光照射下的热动力学行为。

2. 双温度模型理论基础

双温度模型的基本方程组如下:

  • 电子能量守恒方程:

    C_e(T_e) ∂T_e/∂t = ∇ ⋅ (κ_e ∇T_e) - G(T_e - T_l) + S(r, t)

  • 晶格能量守恒方程:

    C_l(T_l) ∂T_l/∂t = ∇ ⋅ (κ_l ∇T_l) + G(T_e - T_l)

其中:

  • T_e 和 T_l 分别表示电子温度和晶格温度;

  • C_e 和 C_l 分别表示电子比热容和晶格比热容,它们通常是温度的函数;

  • κ_e 和 κ_l 分别表示电子热导率和晶格热导率;

  • G 是电子-声子耦合系数,表征电子和晶格之间能量交换的速率;

  • S(r, t) 是激光源项,描述激光能量的沉积过程,其形式取决于激光的特性 (波长、强度、脉冲持续时间等)。

这些方程组的求解需要考虑材料的物理特性参数,例如电子比热容、晶格比热容、电子热导率、晶格热导率以及电子-声子耦合系数。这些参数的值可以从实验测量或第一性原理计算中获得。 其中,电子-声子耦合系数 G 是双温度模型中最关键的参数之一,其准确性直接影响模型的预测精度。

3. Matlab 仿真方法

求解双温度模型方程组通常需要采用数值方法。本文采用有限差分法 (Finite Difference Method, FDM) 对上述偏微分方程进行离散化。 具体步骤如下:

  1. 空间离散化: 将空间域划分成网格,利用有限差分法将空间导数近似为差分形式。

  2. 时间离散化: 采用隐式或显式时间积分方案,例如 Crank-Nicolson 方法或显式 Euler 方法,将时间导数近似为差分形式。选择合适的数值方法需要权衡计算效率和数值稳定性。

  3. 边界条件设定: 根据具体的物理问题,设置合适的边界条件,例如绝热边界条件或恒温边界条件。

  4. 激光源项处理: 根据激光的时空特性,精确地模拟激光源项 S(r, t)

  5. 迭代求解: 利用 Matlab 的数值计算功能,迭代求解离散化后的方程组,得到电子温度和晶格温度在空间和时间上的分布。

4. 仿真结果与分析

通过 Matlab 编写程序,可以模拟不同激光参数和材料参数下电子温度和晶格温度的演化过程。 仿真结果可以以图形的形式展现,例如电子温度和晶格温度随时间的变化曲线,以及电子温度和晶格温度在空间上的分布图。 通过与实验结果进行比较,可以验证双温度模型的准确性以及参数选择的合理性。 分析结果可以揭示电子-声子耦合对热传导过程的影响,以及材料的热物理性质对超快激光加工的影响。

5. 结论

本文详细介绍了利用双温度模型计算晶格和电子热扩散过程的方法,并利用 Matlab 进行了仿真。 通过合理地选择数值方法、设置边界条件和参数,可以利用双温度模型准确地预测超快激光与材料相互作用过程中的热传导行为。 未来工作可以关注更复杂的模型,例如考虑材料的相变、热流动的非线性效应等,以进一步提高模型的精度和适用范围。 同时,可以探索更高效的数值算法,以提高计算效率,并拓展模型在不同材料和应用场景中的应用。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
 
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值