✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要: 本文探讨了双温度模型 (Two-Temperature Model, TTM) 在计算晶格和电子热扩散过程中的应用。双温度模型通过分别描述电子和晶格的温度演化,能够更准确地捕捉超快激光与材料相互作用过程中发生的非平衡热传导现象。本文首先介绍了双温度模型的基本理论框架,包括其 governing equations 及其中的关键参数,例如电子-声子耦合系数。随后,详细阐述了利用 Matlab 仿真求解双温度模型方程组的方法,包括数值方法的选择、边界条件的设定以及结果的分析。最后,通过具体的仿真案例,展示了双温度模型的预测结果,并与实验结果进行了比较,验证了模型的有效性和适用性。
关键词: 双温度模型,热扩散,晶格温度,电子温度,Matlab仿真,非平衡热传导
1. 引言
超快激光与材料相互作用是一个复杂的过程,涉及到多种物理机制,其中热传导扮演着至关重要的角色。传统的单温度模型假设电子和晶格始终保持热平衡,这在许多情况下,特别是对于超短脉冲激光激发的场景,是不准确的。由于激光的超快作用,电子系统会首先吸收能量并迅速升温,而晶格温度的升高则滞后于电子温度。这种电子和晶格温度之间的非平衡状态,使得双温度模型成为更精确描述超快热传导过程的必要工具。双温度模型通过建立电子和晶格各自的能量守恒方程,分别追踪电子和晶格的温度演化,从而更准确地反映材料在超快激光照射下的热动力学行为。
2. 双温度模型理论基础
双温度模型的基本方程组如下:
-
电子能量守恒方程:
C_e(T_e) ∂T_e/∂t = ∇ ⋅ (κ_e ∇T_e) - G(T_e - T_l) + S(r, t)
-
晶格能量守恒方程:
C_l(T_l) ∂T_l/∂t = ∇ ⋅ (κ_l ∇T_l) + G(T_e - T_l)
其中:
-
T_e
和T_l
分别表示电子温度和晶格温度; -
C_e
和C_l
分别表示电子比热容和晶格比热容,它们通常是温度的函数; -
κ_e
和κ_l
分别表示电子热导率和晶格热导率; -
G
是电子-声子耦合系数,表征电子和晶格之间能量交换的速率; -
S(r, t)
是激光源项,描述激光能量的沉积过程,其形式取决于激光的特性 (波长、强度、脉冲持续时间等)。
这些方程组的求解需要考虑材料的物理特性参数,例如电子比热容、晶格比热容、电子热导率、晶格热导率以及电子-声子耦合系数。这些参数的值可以从实验测量或第一性原理计算中获得。 其中,电子-声子耦合系数 G
是双温度模型中最关键的参数之一,其准确性直接影响模型的预测精度。
3. Matlab 仿真方法
求解双温度模型方程组通常需要采用数值方法。本文采用有限差分法 (Finite Difference Method, FDM) 对上述偏微分方程进行离散化。 具体步骤如下:
-
空间离散化: 将空间域划分成网格,利用有限差分法将空间导数近似为差分形式。
-
时间离散化: 采用隐式或显式时间积分方案,例如 Crank-Nicolson 方法或显式 Euler 方法,将时间导数近似为差分形式。选择合适的数值方法需要权衡计算效率和数值稳定性。
-
边界条件设定: 根据具体的物理问题,设置合适的边界条件,例如绝热边界条件或恒温边界条件。
-
激光源项处理: 根据激光的时空特性,精确地模拟激光源项
S(r, t)
。 -
迭代求解: 利用 Matlab 的数值计算功能,迭代求解离散化后的方程组,得到电子温度和晶格温度在空间和时间上的分布。
4. 仿真结果与分析
通过 Matlab 编写程序,可以模拟不同激光参数和材料参数下电子温度和晶格温度的演化过程。 仿真结果可以以图形的形式展现,例如电子温度和晶格温度随时间的变化曲线,以及电子温度和晶格温度在空间上的分布图。 通过与实验结果进行比较,可以验证双温度模型的准确性以及参数选择的合理性。 分析结果可以揭示电子-声子耦合对热传导过程的影响,以及材料的热物理性质对超快激光加工的影响。
5. 结论
本文详细介绍了利用双温度模型计算晶格和电子热扩散过程的方法,并利用 Matlab 进行了仿真。 通过合理地选择数值方法、设置边界条件和参数,可以利用双温度模型准确地预测超快激光与材料相互作用过程中的热传导行为。 未来工作可以关注更复杂的模型,例如考虑材料的相变、热流动的非线性效应等,以进一步提高模型的精度和适用范围。 同时,可以探索更高效的数值算法,以提高计算效率,并拓展模型在不同材料和应用场景中的应用。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类