【布局优化】基于层次分析AHP和布谷鸟算法的5G应急网络无人机动态部署附Matlab代码

✅作者简介:热爱数据处理、建模、算法设计Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

本文将对一篇题为“基于多准则决策的5G应急网络无人机动态部署”的论文进行解读,该论文目前正在同行评审中。论文提出了一种利用分析层次过程(AHP)进行无人机基站(UAV-BS)部署的算法,名为UAV-AHP,并将其与一种基于库克鸟搜索(CS)的元启发式算法进行了比较。该算法旨在解决5G应急网络中无人机部署的NP难问题,实现快速、适应性强的实时部署。

论文摘要指出,UAV-BS在5G及未来6G网络支持下,已被证明在应急网络和高密度事件中有效提升覆盖范围和用户需求管理。传统的无人机部署优化问题属于NP难问题,其求解速度往往无法满足实时应用的需求。因此,论文提出将无人机部署问题转化为一个基于AHP的多准则决策过程。UAV-AHP算法中,所有UAV-BS沿着预定的扫描路径移动,且彼此之间保持最小距离。该算法能够根据实时获取的用户设备(UE)信号指标,高效地推荐最佳的UAV-BS位置。此外,该研究还对5G应急网络规划做出了贡献,提供了RAN切片、网络规模和平衡以及发射功率自动化的解决方案。论文通过模拟三种不同场景(农村、城市和音乐节)来验证所提出的规划和部署方案。结果表明,在计算密集型场景中,UAV-AHP算法在计算时间上显著优于常用的库克鸟搜索(CS)算法,并且在高用户密度环境下也能提供令人满意的解决方案。

**UAV-AHP算法的优势在于其高效性和实时性。**传统的优化算法,例如CS算法,虽然能够找到全局最优解,但在面对大规模网络和实时性要求时,其计算复杂度往往过高,难以满足实际应用的需求。而AHP算法作为一种多准则决策方法,能够根据预先设定的权重和指标,快速有效地选择最佳方案。在UAV-AHP算法中,通过预先规划扫描路径,并根据实时获取的UE信号指标进行决策,进一步提高了算法的效率和适应性。

论文的贡献体现在以下几个方面:

  1. 提出了一种基于AHP的UAV部署算法UAV-AHP: 该算法有效解决了5G应急网络中无人机部署的NP难问题,并具备良好的实时性。

  2. 提供了5G应急网络规划的解决方案: 论文考虑了RAN切片、网络规模和平衡以及发射功率自动化等关键问题,为5G应急网络的规划提供了有益的参考。

  3. 通过仿真验证了算法的有效性: 论文通过三种不同场景的仿真实验,验证了UAV-AHP算法的优越性,并与CS算法进行了比较。

  4. 整合了网络规划和无人机部署: 论文将网络规划和无人机部署集成到一个框架中,实现了端到端的解决方案。

未来的研究方向可以包括:

  1. 考虑更复杂的网络环境: 例如,考虑不同类型UE的差异、信道干扰以及UAV自身的能耗限制。

  2. 开发更先进的AHP权重确定方法: 例如,利用机器学习技术来自动学习权重,提高算法的适应性。

  3. 研究UAV协同部署策略: 多个UAV协同工作可以进一步提高网络覆盖范围和容量。

  4. 结合其他优化算法: 例如,将AHP与其他元启发式算法结合,以期获得更好的性能。

总而言之,这篇论文提出了一种新颖有效的基于AHP的UAV部署算法,为5G应急网络的建设和发展提供了重要的理论和技术支撑。该算法的实时性和高效性使其具有广阔的应用前景,为解决复杂的无人机部署问题提供了新的思路。 论文中提出的网络规划方案也具有重要的实际意义,为5G应急网络的规划和设计提供了宝贵的参考价值。 未来的研究可以进一步完善和拓展该算法,使其能够在更复杂的网络环境中发挥更大的作用。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
 
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值