【信号分解降噪】Matlab实现基于TVFEMD-IMF能量熵增量的数据降噪方法

✅作者简介:热爱数据处理、建模、算法设计Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

信号分解降噪是信号处理领域一个重要的研究方向,其目标在于有效去除信号中的噪声成分,保留信号的有效信息。传统的降噪方法,例如小波变换、平均滤波等,在处理非平稳非线性信号时往往效果不佳。近年来,随着经验模态分解 (Empirical Mode Decomposition, EMD) 及其改进算法的兴起,基于EMD的降噪方法展现出强大的适应性和有效性。然而,EMD自身存在模态混叠等问题,限制了其在复杂信号降噪中的应用。本文将着重探讨一种基于改进的EMD算法——变分模态分解 (Variational Mode Decomposition, VMD) 和有限元法增强型经验模态分解 (Finite Element Method Enhanced Empirical Mode Decomposition, FEMD) 的组合算法——TVFEMD,并结合IMF能量熵增量指标,构建一种新的数据降噪方法,并利用Matlab进行实现和验证。

传统的EMD算法通过设定固定的停止准则来进行迭代分解,容易出现模态混叠现象,即一个IMF成分中包含多个不同时间尺度的特征。为了解决这个问题,VMD算法被提出,它利用变分框架寻找多个模态的最佳分解,有效地抑制了模态混叠。然而,VMD算法的参数选择对降噪效果影响较大,且计算复杂度较高。FEMD算法则通过引入有限元法,对EMD的分解过程进行优化,提高了分解的精度和效率,同时降低了对参数的依赖。

本文提出的TVFEMD算法结合了VMD和FEMD的优点,首先利用VMD算法对原始信号进行预处理,去除部分噪声成分,并为FEMD算法提供一个更“干净”的初始分解结果。接着,利用FEMD算法对VMD分解后的信号进行更精细的分解,获得一系列IMF成分。相比于直接使用VMD或FEMD,TVFEMD算法能够在保持计算效率的同时,更好地抑制模态混叠,提高分解精度。

在确定IMF成分后,需要选择合适的指标来区分噪声和有效信号。传统的基于阈值的降噪方法依赖于经验的选择,鲁棒性较差。本文采用IMF能量熵增量作为判据。能量熵能够有效反映信号的复杂性和规律性,而熵增量则反映了相邻IMF成分的能量变化。通过分析IMF能量熵增量,我们可以识别噪声成分,这些成分通常具有较高的能量熵和较大的熵增量,而有效信号成分则具有较低的能量熵和较小的熵增量。设定合适的阈值,我们就可以有效地去除噪声IMF成分,保留有效信号成分。

Matlab作为强大的数值计算软件,提供了丰富的信号处理工具箱,为本文算法的实现提供了便利。具体实现步骤如下:

  1. 信号导入与预处理: 将待处理的含噪信号导入Matlab,并进行必要的预处理,例如去均值、去趋势等。

  2. TVFEMD分解: 利用Matlab编写或调用相关的函数,实现TVFEMD算法,对预处理后的信号进行分解,得到一系列IMF成分。这需要分别实现VMD和FEMD算法,并进行合理的参数设置,例如VMD的惩罚因子和带宽参数,以及FEMD的有限元网格划分参数。

  3. IMF能量熵增量计算: 计算每个IMF成分的能量和熵,并计算相邻IMF成分的熵增量。这部分需要利用Matlab的信号处理工具箱中的相关函数进行计算。

  4. 阈值设定与噪声去除: 根据IMF能量熵增量,设定合适的阈值,去除噪声成分对应的IMF。阈值的选择可以根据实际情况进行调整,例如可以根据经验设置,也可以利用一些自适应阈值方法。

  5. 信号重构: 将保留的有效IMF成分进行重构,得到降噪后的信号。

  6. 结果分析与评价: 对降噪结果进行分析和评价,例如计算信噪比 (SNR)、均方误差 (MSE) 等指标,以评估降噪效果。

通过以上步骤,我们可以利用Matlab实现基于TVFEMD-IMF能量熵增量的数据降噪方法。该方法结合了VMD和FEMD的优点,并利用IMF能量熵增量作为判据,能够有效去除信号中的噪声,保留信号的有效信息。相比于传统的降噪方法,该方法具有更好的适应性和鲁棒性,尤其适用于处理非平稳非线性信号。未来的研究可以着重于改进TVFEMD算法的参数选择方法,以及探索更有效的噪声判据,进一步提高降噪效果。

总而言之,本文提出的基于TVFEMD-IMF能量熵增量的降噪方法,为信号处理领域提供了一种新的思路和有效的工具。Matlab的实现为该方法的应用和推广提供了强有力的支持,并为进一步研究和改进提供了良好的平台。 后续研究可以考虑将该方法应用于更广泛的领域,例如医学信号处理、地震信号分析等,并探索其在实际应用中的效果和局限性。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
 
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

CSDN海神之光上传的代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b或2023b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪(CEEMDAN)、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 1. EMD(经验模态分解,Empirical Mode Decomposition) 2. TVF-EMD(时变滤波的经验模态分解,Time-Varying Filtered Empirical Mode Decomposition) 3. EEMD(集成经验模态分解,Ensemble Empirical Mode Decomposition) 4. VMD(变分模态分解,Variational Mode Decomposition) 5. CEEMDAN(完全自适应噪声集合经验模态分解,Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise) 6. LMD(局部均值分解,Local Mean Decomposition) 7. RLMD(鲁棒局部均值分解, Robust Local Mean Decomposition) 8. ITD(固有时间尺度分解,Intrinsic Time Decomposition) 9. SVMD(逐次变分模态分解,Sequential Variational Mode Decomposition) 10. ICEEMDAN(改进的完全自适应噪声集合经验模态分解,Improved Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise) 11. FMD(特征模式分解,Feature Mode Decomposition) 12. REMD(鲁棒经验模态分解,Robust Empirical Mode Decomposition) 13. SGMD(辛几何模态分解,Spectral-Grouping-based Mode Decomposition) 14. RLMD(鲁棒局部均值分解,Robust Intrinsic Time Decomposition) 15. ESMD(极点对称模态分解, extreme-point symmetric mode decomposition) 16. CEEMD(互补集合经验模态分解,Complementary Ensemble Empirical Mode Decomposition) 17. SSA(奇异谱分析,Singular Spectrum Analysis) 18. SWD(群分解,Swarm Decomposition) 19. RPSEMD(再生相移正弦辅助经验模态分解,Regenerated Phase-shifted Sinusoids assisted Empirical Mode Decomposition) 20. EWT(经验小波变换,Empirical Wavelet Transform) 21. DWT(离散小波变换,Discraete wavelet transform) 22. TDD(时域分解,Time Domain Decomposition) 23. MODWT(最大重叠离散小波变换,Maximal Overlap Discrete Wavelet Transform) 24. MEMD(多元经验模态分解,Multivariate Empirical Mode Decomposition) 25. MVMD(多元变分模态分解,Multivariate Variational Mode Decomposition)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值