【优化求解】基于遗传算法求解供应链网络的建立与道路破坏优化问题附Matlab代码

 ✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

摘要: 全球化背景下,供应链网络的韧性与效率至关重要。然而,突发事件,例如自然灾害导致的道路破坏,会严重影响供应链的稳定性。本文探讨利用遗传算法 (Genetic Algorithm, GA) 优化求解供应链网络的建立及应对道路破坏的问题。通过构建一个多目标优化模型,该模型同时考虑网络建设成本、运输成本以及道路破坏后的恢复能力,并运用遗传算法进行求解,最终得到一个在成本和韧性之间取得平衡的供应链网络结构。本文将详细阐述模型的构建过程、遗传算法的具体实现以及案例研究的结果,并分析算法的有效性和局限性,为供应链网络的设计和优化提供参考。

关键词: 供应链网络;道路破坏;遗传算法;多目标优化;韧性;成本

一、引言

现代供应链网络日益复杂,其高效运行对国民经济和社会稳定至关重要。然而,不可预测的事件,例如地震、洪涝、暴风雪等自然灾害,往往会造成道路破坏,导致运输中断,进而引发供应链中断,造成巨大的经济损失和社会影响。因此,构建一个既高效又具有韧性的供应链网络成为一个迫切需要解决的问题。

传统的供应链网络设计方法往往侧重于成本最小化,而忽略了网络的韧性。面对道路破坏等突发事件,这些网络缺乏有效的应急机制,容易造成瘫痪。因此,需要一种新的方法,能够在考虑成本的同时,有效提高供应链网络应对突发事件的能力。

遗传算法作为一种强大的全局优化算法,具有处理复杂问题、不易陷入局部最优解等优点,近年来在供应链优化领域得到了广泛应用。本文将利用遗传算法解决供应链网络的建立与道路破坏优化问题,旨在寻找一个在成本和韧性之间取得最佳平衡的网络结构。

二、模型构建

本模型以最小化总成本和最大化网络韧性为目标,构建一个多目标优化模型。模型考虑以下因素:

  • 节点选择: 模型需确定哪些地点作为供应链网络中的节点 (例如仓库、工厂、零售店)。每个节点都有其相应的建立成本。

  • 路径选择: 模型需确定节点之间的运输路径,考虑路段的长度、通行能力以及破坏概率。

  • 道路破坏: 模型模拟道路破坏事件,并评估道路破坏对网络的影响。

  • 应急方案: 模型考虑在道路破坏后,如何调整运输路径以维持供应链的正常运行。

2.1 目标函数:

模型包含两个目标函数:

  • 最小化总成本 (f1): 包括节点建立成本和运输成本。

    • 节点建立成本: ∑Ci * Xi

    • 运输成本: ∑Dij * Xij * Cij (Dij为路径长度,Xij为路径选择变量,Cij为单位距离运输成本)

  • 最大化网络韧性 (f2): 定义为道路破坏后网络仍然能够保持功能的概率。可以使用多种指标来衡量网络韧性,例如网络连通性、最大流最小割等。本文采用基于网络连通性的韧性指标,具体计算方法为:在随机模拟道路破坏事件后,计算网络中能够连通的节点对数量占总节点对数量的比例。

2.2 约束条件:

模型需满足以下约束条件:

  • 供应需求平衡: 满足每个节点的供应和需求平衡。

  • 容量约束: 每条路径的运输能力不能超过其最大容量。

  • 路径连通性: 网络需保持连通性。

三、遗传算法的实现

本模型采用非支配排序遗传算法 (NSGA-II) 进行求解。其具体步骤如下:

  1. 种群初始化: 随机生成初始种群,每个个体代表一个可能的供应链网络结构。

  2. 适应度评估: 根据目标函数 f1 和 f2 对每个个体进行评估。

  3. 选择: 采用非支配排序和拥挤距离选择策略,选择优秀个体进入下一代。

  4. 交叉: 采用基于路径的交叉算子,交换两个个体部分路径信息,产生新的个体。

  5. 变异: 采用节点和路径的变异算子,对个体进行随机修改,增加种群多样性。

  6. 终止条件: 当满足预设的终止条件 (例如迭代次数或收敛精度) 时,算法终止。

  7. 结果分析: 对Pareto前沿上的解进行分析,选择最优的供应链网络结构。

四、案例研究与结果分析

本文将通过一个具体的案例研究来验证模型和算法的有效性。案例研究中,我们将考虑一个包含多个城市和不同类型的道路的供应链网络。通过设定不同的道路破坏概率和成本参数,利用NSGA-II算法进行求解,并分析Pareto前沿上的解。结果将显示在成本和韧性之间取得平衡的供应链网络结构。

五、结论与展望

本文提出了一种基于遗传算法的供应链网络建立与道路破坏优化方法。通过构建多目标优化模型并运用NSGA-II算法,该方法能够有效地寻找在成本和韧性之间取得平衡的供应链网络结构。案例研究结果验证了该方法的有效性。

然而,本模型也存在一些局限性。例如,模型假设道路破坏事件是独立的,忽略了道路破坏之间的相关性。未来的研究可以考虑将道路破坏的相关性纳入模型,并探索更复杂的韧性指标。此外,可以进一步研究不同类型的遗传算法及其参数对模型求解效果的影响,以提高算法的效率和精度。 更深入的研究还可以考虑引入不确定性分析,例如模糊集理论和随机规划方法,以应对供应链网络中存在的各种不确定性因素。 最终目标是构建一个更加健壮、高效且具有适应性的供应链网络,以应对日益复杂的全球化环境下的各种挑战。

⛳️ 运行结果

🔗 参考文献

[1] 郑丽.震后应急物资配送与道路抢修集成优化研究[D].西南交通大学,2012.DOI:10.7666/d.y2106673.

[2] 刘长石.震后应急物流系统中的定位—路径问题(LRP)模型与优化算法研究[D].电子科技大学[2024-10-26].DOI:CNKI:CDMD:1.1016.176817.

🎈 部分理论引用网络文献,若有侵权联系博主删除

博客擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值