✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
摘要: 多智能体系统一致性问题是近年来控制领域的研究热点,其目标是设计有效的分布式控制协议,使得系统中所有智能体在有限时间内达到一致的状态。本文将深入探讨分布式有限时间异质多智能体系统的一致性问题,分析其挑战,并综述现有的一些解决方法及未来研究方向。
关键词: 多智能体系统;一致性;有限时间;异质性;分布式控制
引言: 多智能体系统由多个相互作用的智能体组成,广泛应用于机器人集群、传感器网络、电力系统等领域。在这些应用中,一致性问题至关重要,它要求所有智能体在协同工作中达到对某些状态变量(如位置、速度、姿态等)的共同一致值。传统的一致性研究主要关注渐近一致性,即智能体在无限时间内收敛到一致状态。然而,在许多实际应用中,需要系统在有限时间内达到一致,这对于提高系统响应速度和实时性具有重要意义。此外,实际的多智能体系统往往具有异质性,即智能体之间存在动力学模型、控制能力或传感器信息等方面的差异,这给一致性控制带来了更大的挑战。因此,研究分布式有限时间异质多智能体系统的一致性问题具有重要的理论意义和应用价值。
一、 问题描述与挑战
考虑由N个智能体组成的异质多智能体系统,每个智能体i的动力学模型可以描述为:
ẋᵢ = fᵢ(xᵢ,t) + uᵢ, i = 1, 2, ..., N
其中,xᵢ ∈ Rⁿ表示智能体i的状态向量,fᵢ(xᵢ,t)表示智能体i的自身动力学,uᵢ ∈ Rⁿ表示智能体i的控制输入。 异质性体现在fᵢ(xᵢ,t)对于不同的i可能不同。 分布式控制协议意味着每个智能体仅能与其邻居通信,并根据邻居信息更新自身的控制输入uᵢ。 有限时间一致性要求存在一个有限时间T>0,使得对于任意初始状态,所有智能体状态在时间T之后满足:
lim┬(t→T)‖xᵢ(t) - xⱼ(t)‖ = 0, ∀i, j ∈ {1, 2, ..., N}
其中‖·‖表示某种范数。
异质多智能体系统有限时间一致性面临以下挑战:
-
非线性动力学: 智能体的自身动力学fᵢ(xᵢ,t)通常是非线性的,这使得系统分析和控制设计变得复杂。
-
异质性: 智能体动力学模型、控制能力和传感器信息等方面的差异增加了系统分析的难度,传统针对齐次系统的控制方法难以直接应用。
-
有限时间收敛: 保证系统在有限时间内收敛到一致状态需要设计特殊的控制协议,并对其收敛速度和鲁棒性进行分析。
-
通信拓扑: 通信网络的拓扑结构会影响系统的一致性性能,需要考虑通信延迟、丢包等因素的影响。
二、 现有研究方法
针对上述挑战,目前已提出多种解决方法,主要包括:
-
基于非线性控制的有限时间一致性: 利用非线性控制技术,例如滑模控制、终端滑模控制等,可以设计出能够保证有限时间收敛的分布式控制协议。这些方法通常需要对系统动力学进行精确建模,并进行复杂的非线性分析。
-
基于分段函数的有限时间一致性: 通过设计分段连续的控制协议,可以实现有限时间一致性。这种方法的优点是相对简单,但需要仔细选择分段函数的参数,以保证系统的稳定性和收敛速度。
-
基于自适应控制的有限时间一致性: 当智能体动力学模型存在不确定性时,可以使用自适应控制技术来估计未知参数,并设计相应的自适应控制协议,保证有限时间一致性。
-
基于图论的有限时间一致性: 利用图论分析通信拓扑结构,可以设计出满足一定连通性条件的分布式控制协议,保证系统的有限时间一致性。
三、 未来研究方向
尽管已经取得了一定的进展,分布式有限时间异质多智能体系统一致性研究仍存在许多有待探索的方向:
-
更一般的异质性: 目前的研究主要集中在某些特定类型的异质性上,例如参数异质性。未来需要研究更一般的异质性,例如拓扑结构异质性、控制能力异质性等。
-
鲁棒性: 实际系统中存在噪声、干扰和故障等不确定因素,需要研究具有更强鲁棒性的有限时间一致性控制协议。
-
事件触发机制: 为了减少通信负担和节约能源,可以研究基于事件触发机制的有限时间一致性控制协议。
-
应用研究: 将理论研究成果应用于实际系统,例如机器人集群、无人机编队、传感器网络等,并验证其有效性。
结论: 分布式有限时间异质多智能体系统一致性问题是一个具有挑战性的研究课题,其解决方法涉及非线性控制、图论、自适应控制等多个领域。本文综述了现有的一些研究方法,并展望了未来研究方向。相信随着研究的深入,将会有更多有效的控制策略被提出,为多智能体系统的实际应用提供更加可靠的保障。 未来的研究需要更加关注实际应用场景,并结合人工智能、机器学习等技术,开发出更加智能、鲁棒和高效的分布式有限时间异质多智能体系统一致性控制方案。
📣 部分代码
figure(1)
plot(Ts,x1(:,[1,2,3,4,5,6]),'LineWidth',1);
xlabel('time(s)');ylabel({'positions of agents';'x_{i,(1)}'});
legend('x_{1(1)}','x_{2(1)}','x_{3(1)}','x_{4(1)}','x_{5(1)}','x_{6(1)}')
grid on
figure(2)
plot(Ts,x1(:,[7,8,9,10,11,12]),'LineWidth',1);
xlabel('time(s)');ylabel({'positions of agents';'x_{i,(2)}'});
legend('x_{1(2)}','x_{2(2)}','x_{3(2)}','x_{4(2)}','x_{5(2)}','x_{6(2)}')
grid on
figure(3)
plot(Ts,v1(:,[1 2 3 4]),'LineWidth',1);
xlabel('time(s)');ylabel({'velocity of agents';'v_{i,(1)}'});
legend('v_{1(1)}','v_{2(1)}','v_{3(1)}','v_{4(1)}')
grid on
figure(4)
plot(Ts,v1(:,[5 6 7 8]),'LineWidth',1);
xlabel('time(s)');ylabel({'velocity of agents';'v_{i,(2)}'});
legend('v_{1(2)}','v_{2(2)}','v_{3(2)}','v_{4(2)}')
grid on
figure(5)
plot(Ts,U3,'LineWidth',1);
xlabel('time(s)');ylabel({'control input of agents';'u_{i,(1)}'});
legend('v_{1(1)}','v_{2(1)}','v_{3(1)}','v_{4(1)}')
grid on
figure(6)
plot(Ts,U4,'LineWidth',1);
xlabel('time(s)');ylabel({'control input of agents';'u_{i,(2)}'});
legend('v_{1(2)}','v_{2(2)}','v_{3(2)}','v_{4(2)}')
grid on
% %上标用 ^,下标用 _
% % 调用方式为: ^{任意字符}, _{任意字符}, 注意{}的使用!
% title({'position changes of agents';'the initial states z_{2}(0)=(20,40,-30,10,-30,-20)^{T}'},'FontSize',10);% title换行,两行的内容用分号隔开,再用大括号括起来。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
擅长领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇