【信号调制】MSK调制解调物理层Matlab仿真,加权后I路 加权后Q路

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

最小频移键控(Minimum Shift Keying, MSK) 是一种特殊的连续相位调制技术,它在保证频谱效率的同时,具有良好的抗多径衰落性能,广泛应用于各种通信系统中。本文将深入探讨MSK调制解调的物理层实现,并利用Matlab进行仿真,重点分析加权后I路和Q路信号的特性。

MSK调制可以被视为一种特殊的正交频移键控(Offset Quadrature Phase Shift Keying, OQPSK) 调制,其区别在于MSK使用了更平滑的相位变化,从而降低了频谱旁瓣,提高了频谱效率。 MSK调制器本质上是一个将数字信息映射到载波相位和频率的装置。 假设输入的二进制数据流为{b[n]},其中b[n] ∈ {0, 1}。 MSK调制可以表示为:

s(t) = Acos(2πf<sub>c</sub>t + θ(t))

其中,A为载波幅度,f<sub>c</sub>为载波频率,θ(t) 为随输入数据变化的相位。 MSK的独特之处在于其相位变化速率是恒定的,避免了OQPSK中可能出现的突变相位跳变。 这种恒定的相位变化,可以通过对输入数据进行整形滤波来实现。 常用的整形滤波器是升余弦滤波器,其滚降系数通常设置为0.5,以达到最佳的频谱效率和抗干扰性能。

在MSK调制中,I路和Q路信号分别对应着不同的数据序列。为了实现连续相位变化,需要对输入数据序列进行加权处理。 通常,加权过程可以表示为:

I[n] = Σ<sub>k=0</sub><sup>N-1</sup> b[k]g(n-k)

Q[n] = Σ<sub>k=0</sub><sup>N-1</sup> b[k+1]g(n-k)

其中,g(n) 是升余弦滤波器的脉冲响应,N为滤波器的抽头数。 需要注意的是,Q路信号的数据序列比I路信号延迟一个码元周期。这种延迟是实现连续相位变化的关键。 加权后的I路和Q路信号再分别与正交载波进行调制,最后叠加得到MSK调制信号。

在解调端,MSK信号首先与正交载波进行解调,得到I路和Q路基带信号。 这些基带信号通常会包含噪声和干扰。 为了提高解调的可靠性,需要对I路和Q路信号进行匹配滤波,即使用与调制端相同的升余弦滤波器进行滤波。 滤波后的信号再进行采样和判决,恢复出原始的二进制数据序列。

Matlab仿真可以有效地验证上述MSK调制解调过程。 仿真步骤如下:

  1. 产生随机二进制数据序列: 利用Matlab函数 randi 生成随机的0和1序列。

  2. 升余弦滤波器设计: 利用Matlab函数 firrcos 设计升余弦滤波器。

  3. I路和Q路加权: 根据上述公式,对输入数据序列进行加权处理。

  4. MSK调制: 将加权后的I路和Q路信号分别与正交载波进行调制,并叠加。

  5. AWGN信道建模: 向调制信号添加高斯白噪声,模拟实际信道环境。

  6. MSK解调: 将接收信号与正交载波进行解调,得到I路和Q路基带信号。

  7. 匹配滤波: 对解调后的信号进行匹配滤波。

  8. 采样和判决: 对滤波后的信号进行采样,并根据阈值进行判决,恢复出原始数据。

  9. 误比特率(BER)计算: 比较恢复出的数据序列与原始数据序列,计算误比特率。

通过改变信噪比(SNR),可以观察到误比特率的变化情况。 通过分析加权后I路和Q路信号的频谱特性、自相关函数以及眼图,可以深入理解MSK调制解调的物理机制,并评估其性能。 例如,可以观察到加权后I路和Q路信号的频谱更加紧凑,减少了频谱旁瓣;眼图的开度也能够反映系统的抗噪声能力。 这些分析结果可以为实际系统设计提供重要的参考。

总之,MSK调制解调技术的仿真分析对于理解其工作原理和性能评估至关重要。 本文简要介绍了MSK调制解调的基本原理和Matlab仿真步骤,并指出了加权后I路和Q路信号在整个过程中的重要作用。 更深入的研究可以包括不同滚降系数的影响、不同信道条件下的性能分析以及更复杂的解调算法等方面。 这些研究将进一步提升MSK调制技术在实际应用中的可靠性和效率。

📣 部分代码

%随机产生一个二进制序列作为仿真用的消息序列

function  [data_binary,data_binary1]=rand_binary(data_len); 

%**********************************************************

%data 序列长度

%data_binary 产生的二进制序列

%**********************************************************

data1=randi([0,1],1,data_len); %均匀分布

data_binary=2*data1-1; 

data_binary1=data1; 

end

%data_binary是一段-1和1的序列,data_binary1是一段0和1的序列

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值