【图像处理】基于深度学习的人脸图像生物物理参数分解与场景理解Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🎁  私信更多全部代码、Matlab仿真定制

🔥 内容介绍

本文深入探讨了BioFaceNet,一种创新的深度卷积神经网络(CNN)架构,其目标是将单张人脸图像分解为多个组成部分,从而实现对人脸图像的更深层次的理解和分析。这些组成部分包括人脸的生物物理参数图、漫反射阴影图、镜面反射阴影图,以及场景照明的光谱功率分布和相机的光谱敏感度。BioFaceNet通过自监督学习的方法,利用模型驱动的解码器计算外观损失进行训练。鉴于该任务的固有欠约束性,本文引入了一系列基于模型的先验知识,以指导网络的学习过程。这些先验包括:将皮肤光谱反射率限制在生物物理模型范围内;对相机光谱敏感度施加统计先验;对照明光谱施加物理约束;对镜面反射施加稀疏性先验;以及使用粗略的形状代理对漫反射阴影进行直接监督。实验结果表明,BioFaceNet在真实场景数据上取得了令人信服的定性结果,并且为该新兴任务建立了一个量化评估的基准。

1. 引言

人脸图像分析是计算机视觉领域的一个重要研究方向。传统的图像分析方法主要关注于识别、验证或重建等任务,而对图像形成的内在因素,例如光照、材质以及相机参数,通常缺乏深入的建模和理解。然而,这些因素对于理解图像内容以及实现更高级的应用至关重要。本文所提出的BioFaceNet旨在突破传统方法的限制,通过深度学习方法将单张人脸图像分解为多个基本组成部分,从而实现对人脸图像更深层次的理解。

具体而言,BioFaceNet的目标是将单张人脸图像分解为以下要素:

  • 生物物理参数图: 这些参数描述了人脸皮肤的固有属性,如黑色素和血红素的浓度,这些参数对于理解人脸的肤色和健康状况至关重要。

  • 漫反射阴影图: 漫反射阴影是由光线在粗糙表面上散射而形成的,它提供了人脸的形状和表面细节的信息。

  • 镜面反射阴影图: 镜面反射阴影是光线在光滑表面上反射而形成的,它可以提供有关人脸表面光泽度的信息。

  • 场景照明的光谱功率分布: 这描述了场景中照明的光谱特征,对于准确分析人脸的颜色和外观至关重要。

  • 相机的光谱敏感度: 这描述了相机传感器如何对不同波长的光做出反应,是图像颜色准确性的重要因素。

将人脸图像分解为这些基本要素具有巨大的潜在价值,例如:

  • 更准确的人脸识别: 通过分离照明和材质等因素,可以提高人脸识别系统的鲁棒性。

  • 人脸编辑和合成: 可以对分解后的要素进行操作,从而实现逼真的人脸编辑和合成。

  • 医学诊断: 生物物理参数图可以提供有关皮肤状况的信息,从而辅助医学诊断。

2. 相关工作

在人脸图像分析领域,许多研究者已经探索了如何从图像中提取更深层次的信息。这些研究大致可以分为以下几类:

  • 基于模型的反演: 这些方法利用物理模型来反演图像中的光照、材质等参数。然而,这些方法通常依赖于复杂的数学模型,计算量大,并且可能需要精确的校准。

  • 基于学习的反演: 近年来,深度学习方法在图像反演任务中取得了显著的进展。这些方法通过学习大量数据来建立图像与参数之间的映射关系。然而,许多现有的方法仍然没有充分利用基于模型的先验知识,导致结果不准确或不真实。

BioFaceNet结合了基于模型和基于学习的方法,充分利用了各自的优势。它利用深度学习的强大能力来拟合复杂的图像关系,同时结合基于模型的先验知识来提高反演的准确性和鲁棒性。

3. 方法

BioFaceNet的核心是一个完全卷积的编码器-解码器网络。编码器负责将输入的人脸图像映射到特征空间,解码器则将这些特征映射回不同的参数图。为了估计向量量(如照明光谱和相机敏感度),网络还包含一个全连接的分支。

为了应对该任务的固有欠约束性,BioFaceNet引入了以下模型驱动的先验知识:

  • 皮肤光谱反射率的生物物理模型: 皮肤的光谱反射率被建模为一个包含黑色素和血红素浓度等参数的生物物理模型。这有助于限制解空间,并产生更真实的皮肤参数图。

  • 相机光谱敏感度的统计先验: 相机光谱敏感度的分布往往具有一定的规律性,利用统计先验可以约束其变化范围。

  • 照明光谱的物理约束: 照明光谱必须满足物理规律,例如非负性。

  • 镜面反射的稀疏性先验: 镜面反射通常只发生在少数几个像素上,利用稀疏性先验可以提高其估计的准确性。

  • 漫反射阴影的直接监督: 利用粗略的人脸形状代理来监督漫反射阴影的估计,可以提高其准确性。

网络的训练采用自监督学习的方式。通过模型驱动的解码器将估计的参数图组合成重建的图像,并与原始输入图像进行比较,计算外观损失。该损失函数指导网络学习从图像中提取正确的参数。

4. 实验

为了评估BioFaceNet的性能,我们进行了大量的实验。实验结果表明,BioFaceNet在真实场景数据上取得了令人信服的定性结果。为了实现定量的评估,我们还创建了一个基准数据集,其中包含真实的人脸图像以及对应的ground truth参数。该数据集为未来该方向的研究提供了重要的参考。

实验结果证明,BioFaceNet能够从单张人脸图像中准确分解出生物物理参数图、漫反射和镜面反射阴影图,并估计出场景照明的光谱功率分布和相机的光谱敏感度。这些分解的要素能够更深入地理解人脸图像的形成机制,并且为多种应用提供了可能。

5. 结论

本文提出了BioFaceNet,一种基于深度学习的人脸图像分解方法。该方法通过自监督学习的方式,利用模型驱动的解码器和一系列基于模型的先验知识,能够将单张人脸图像分解为生物物理参数图、漫反射和镜面反射阴影图,并估计出场景照明的光谱功率分布和相机的光谱敏感度。实验结果表明,BioFaceNet在真实场景数据上取得了令人信服的定性结果,并且我们建立了量化评估的基准数据集。我们相信BioFaceNet的提出为理解和分析人脸图像提供了一种新的视角,并为多种应用奠定了基础。

📣 部分代码

C_he = c_hemoglobin.*0.25;Ye =  0.75;abs_baseline = 0.0244 + (8.53.*exp(-(wavelength - 154.0)./66.2));total_melanin=model.mu_a_melanin;% the absorption coefficient of the epidermis:m_a_epidermis=(total_melanin.*melanosomes_melanin)+ ...             ( C_he.*( (Ye.*m_oxy) + ((1-Ye).* m_deoxy) ))+ ...         (abs_baseline.*(1.0 - melanosomes_melanin - C_he ));% Epidermis: Lambert-Beer Law  transmittance= exp( -1.0.*m_a_epidermis);%%mu_a_blood = model.mu_a_blood;musp_total=model.musp_total;d=model.thickness_papillary_dermis;% the absorption coefficient for the dermis: mu_a_dermis = c_hemoglobin.*mu_a_blood + ((1-c_hemoglobin).*abs_baseline); % Dermis: Kubelka-Munk Reflection[R_pderm,T_pderm] = computeSingleLayer(mu_a_dermis,musp_total,d);% Layered Skin Reflectance Model R_total = transmittance.*R_pderm.*transmittance;

⛳️ 运行结果

🔗 参考文献

[1] Alotaibi, Sarah , and  W. Smith . "BioFaceNet: Deep Biophysical Face Image Interpretation." (2019).

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值