【无人机】无人机平台的非移动 GPS 干扰器进行位置估计的多种传感器融合算法的性能分析【AEPF、UKF、PF、AHINF、HIF、EPF、 AKF、 UPF、 EKF】附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着无人机技术的飞速发展,其应用场景日益广泛,从物流运输、农业植保到测绘勘探、应急救援等领域均可见其身影。然而,无人机依赖全球定位系统 (GPS) 进行导航和定位,使其极易受到 GPS 干扰的影响。特别是在非移动GPS干扰器存在的情况下,无人机的定位精度会显著下降,甚至完全失效。为了解决这一问题,研究者们提出了多种基于传感器融合算法的位置估计方法,旨在利用其他传感器信息弥补GPS信号缺失带来的定位误差。本文将深入分析几种常用的传感器融合算法,包括自适应扩展粒子滤波 (AEPF)、无迹卡尔曼滤波 (UKF)、粒子滤波 (PF)、自适应模糊推理神经网络滤波 (AHINF)、混合式信息滤波 (HIF)、增强粒子滤波 (EPF)、自适应卡尔曼滤波 (AKF)、不变粒子滤波 (UPF) 和扩展卡尔曼滤波 (EKF),评估它们在无人机平台非移动GPS干扰下的位置估计性能,并探讨各自的优缺点。

1. 传感器融合的必要性与挑战

在GPS信号缺失或受到干扰的情况下,仅依赖GPS的无人机定位精度将大打折扣。为了保证无人机的安全稳定飞行,需要利用其他传感器信息进行辅助定位。常用的传感器包括惯性测量单元 (IMU)、视觉传感器 (如相机)、激光雷达 (LiDAR)、超声波传感器等。IMU能够提供无人机的角速度和加速度信息,通过积分可以推算位置和姿态,但其误差会随着时间累积,导致漂移现象。视觉传感器可以通过图像处理识别环境特征,进行视觉里程计定位,但受光照条件和环境纹理的影响较大。LiDAR能够提供高精度的三维环境信息,但在复杂环境中容易受到遮挡和反射的影响。超声波传感器则适用于低空悬停等场景,精度相对较低。

传感器融合的关键在于如何将来自不同传感器的信息有效地融合在一起,克服各自的局限性,从而获得更加准确可靠的位置估计结果。这面临着诸多挑战:

  • 传感器噪声和误差的差异性:

     不同传感器的噪声分布、误差模型和精度水平各不相同,需要进行精确的建模和校准,才能保证融合算法的有效性。

  • 传感器信息的不确定性:

     传感器信息往往存在不确定性,如何量化和传递这些不确定性,并将其纳入融合算法中,是提高定位精度的关键。

  • 计算复杂度:

     传感器融合算法的计算复杂度往往较高,需要在实时性和精度之间进行权衡,选择合适的算法。

  • 鲁棒性:

     在恶劣环境下,例如GPS干扰、光照变化、环境遮挡等,传感器融合算法的鲁棒性至关重要,需要能够适应各种复杂情况。

2. 常用传感器融合算法分析

接下来,我们将对几种常用的传感器融合算法进行详细分析,评估它们在无人机平台非移动GPS干扰下的位置估计性能。

2.1 扩展卡尔曼滤波 (EKF)

EKF是最早被广泛应用于传感器融合的算法之一,它基于卡尔曼滤波,通过线性化非线性系统模型来实现非线性滤波。EKF的优点在于计算简单,易于实现,但其局限性在于线性化过程可能导致较大的误差,特别是在非线性较强的系统中,其性能会显著下降。在GPS干扰下,EKF可能会由于GPS信息的缺失和误差的累积而导致发散。

2.2 无迹卡尔曼滤波 (UKF)

UKF是对EKF的改进,它使用Sigma点来逼近状态的概率分布,避免了线性化过程,因此在非线性系统中的性能优于EKF。UKF的计算复杂度略高于EKF,但其精度更高,鲁棒性更好。在GPS干扰下,UKF可以通过IMU等传感器的信息来维持一定的定位精度,但长时间的GPS缺失仍会导致误差累积。

2.3 粒子滤波 (PF)

PF是一种基于蒙特卡罗方法的非参数滤波算法,它使用大量的粒子来表示状态的概率分布,能够处理任意非线性、非高斯的系统。PF的优点在于精度高,鲁棒性好,但其计算复杂度非常高,需要大量的粒子才能获得较好的性能。在GPS干扰下,PF可以通过IMU等传感器的信息来引导粒子的分布,降低误差,但粒子退化问题仍然是一个挑战。

2.4 扩展粒子滤波 (EPF)

EPF是对PF的改进,它结合了EKF和PF的优点,利用EKF来预测粒子的状态,从而减少了粒子退化问题,提高了算法的效率。EPF在GPS干扰下,可以通过EKF来利用IMU信息进行预测,然后利用粒子滤波进行修正,从而获得更好的定位精度。

2.5 不变粒子滤波 (UPF)

UPF也是对PF的改进,其核心思想是在采样过程中保持状态的概率分布不变,从而提高了算法的效率和稳定性。UPF通过引入不变性约束来减少粒子退化问题,从而在GPS干扰下获得更好的定位性能。

2.6 自适应卡尔曼滤波 (AKF)

AKF是对卡尔曼滤波的改进,它能够根据实时的测量数据动态调整滤波参数,从而提高滤波器的适应性和鲁棒性。AKF可以通过估计测量噪声的统计特性来调整滤波增益,从而在GPS干扰下更好地抑制噪声,提高定位精度。

2.7 混合式信息滤波 (HIF)

HIF是一种基于信息滤波的传感器融合算法,它将来自不同传感器的信息融合在一起,构建一个全局信息矩阵,然后利用该矩阵进行状态估计。HIF的优点在于能够有效地处理不同传感器之间的相关性,提高定位精度。在GPS干扰下,HIF可以通过IMU等传感器的信息来弥补GPS信息的缺失,从而维持一定的定位精度。

2.8 自适应模糊推理神经网络滤波 (AHINF)

AHINF是一种结合模糊推理神经网络和滤波器的传感器融合算法。它利用模糊推理神经网络来建模非线性系统,然后利用滤波器进行状态估计。AHINF的优点在于能够处理非线性较强的系统,具有较好的鲁棒性和适应性。在GPS干扰下,AHINF可以通过IMU等传感器的信息来构建模糊推理规则,从而提高定位精度。

2.9 自适应扩展粒子滤波 (AEPF)

AEPF是一种结合了自适应滤波和扩展粒子滤波的传感器融合算法。它利用自适应滤波来动态调整粒子滤波的参数,从而提高算法的效率和精度。AEPF在GPS干扰下,可以通过自适应滤波来估计测量噪声的统计特性,然后利用扩展粒子滤波进行修正,从而获得更好的定位精度。

3. 性能分析与比较

在评估上述算法的性能时,可以考虑以下几个指标:

  • 定位精度:

     位置估计的均方根误差 (RMSE) 或平均绝对误差 (MAE) 是衡量定位精度的常用指标。

  • 计算复杂度:

     算法的运行时间或所需计算资源是衡量计算复杂度的常用指标。

  • 鲁棒性:

     算法在恶劣环境下的表现,例如GPS干扰强度变化、传感器故障等。

  • 收敛速度:

     算法达到稳定状态所需的时间。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值