✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
在全球能源转型与 “双碳” 目标的推动下,提高能源利用效率、促进可再生能源消纳成为能源领域的关键任务。热电联供型微电网整合了电力、热力等多种能源形式,实现了能源的梯级利用,而氢储能技术的引入,进一步增强了微电网的灵活性与稳定性。本文将深入探讨基于氢储能的热电联供型微电网优化调度方法,助力提升微电网的综合性能与经济效益。
一、研究背景与意义
(一)能源转型需求
传统能源的过度使用带来了环境污染和资源短缺等问题,加速向可再生能源转型迫在眉睫。太阳能、风能等可再生能源具有间歇性和波动性,大规模接入电网时会对电力系统稳定性造成冲击。热电联供型微电网通过同时供应电力和热力,能够提高能源利用效率,但仍需有效的储能手段来平抑可再生能源的波动。氢储能作为一种高效、清洁且能量密度高的储能方式,为解决这一问题提供了新途径。
(二)微电网优化调度的重要性
优化调度是微电网实现高效运行的核心环节,它旨在合理安排微电网内各能源设备的出力,在满足用户电、热负荷需求的前提下,降低运行成本、减少环境污染,并提高系统的可靠性和稳定性。基于氢储能的热电联供型微电网涉及多种能源转换设备和复杂的能量流动关系,因此,研究高效的优化调度方法具有重要的现实意义。
二、氢储能与热电联供型微电网概述
(一)氢储能技术原理
氢储能系统主要包括电解水制氢、氢气储存和氢气发电三个环节。在电力过剩或电价较低时,利用可再生能源发电产生的电能驱动电解水装置,将水分解为氢气和氧气;产生的氢气通过高压气态储存、低温液态储存或金属氢化物储存等方式进行存储;当电力需求高峰或可再生能源发电不足时,氢气通过燃料电池发电或燃气轮机发电等方式转化为电能,重新接入微电网。
(二)热电联供型微电网架构
热电联供型微电网通常由分布式电源(如光伏、风电、微型燃气轮机等)、供热设备(如燃气锅炉、热泵等)、储能设备(氢储能、电池储能等)、电 - 热转换设备(如电锅炉、余热回收装置等)以及电、热负荷组成。各设备之间通过电力网络和热力网络相互连接,形成一个有机整体,实现电能和热能的协同供应与优化配置。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
本主页CSDN博客涵盖以下领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类