✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着海洋科技的飞速发展,无人艇(Unmanned Surface Vehicle, USV)作为一种重要的海洋智能装备,在海洋环境监测、水文调查、海上巡逻、以及搜寻救援等领域展现出广阔的应用前景。然而,在复杂、动态的海洋环境中自主航行,尤其是在拥挤的水域中安全可靠地避开障碍物,是无人艇实现智能化应用的关键挑战。针对这一挑战,基于模型预测控制(Model Predictive Control, MPC)的避碰算法因其优越的预测能力、优化控制策略和处理约束的能力,受到了广泛的关注。本文将深入探讨基于MPC的无人艇避碰算法的原理,详细阐述其Matlab实现,并展望其在未来海洋应用中的前景。
一、 无人艇避碰的挑战与现有方法
无人艇在实际航行过程中,需要面对诸多挑战。首先,海洋环境具有高度的复杂性和动态性,包括风、浪、流等多种干扰因素,这些因素会显著影响无人艇的运动轨迹。其次,水域环境复杂,存在着静态的陆地、岛屿、码头等固定障碍物,以及动态的船舶、渔船、浮标等移动障碍物,需要无人艇具备准确感知和识别这些障碍物的能力。最后,不同类型的障碍物具有不同的尺寸、速度和运动模式,无人艇需要根据这些信息制定合理的避碰策略,确保自身的航行安全。
针对无人艇避碰问题,研究人员提出了多种解决方法,包括:
-
基于规则的避碰方法: 这种方法通常基于船舶避碰规则(COLREGs)或预定义的避碰规则,根据当前环境信息判断是否需要避碰,并执行相应的避碰动作。该方法简单易行,但缺乏全局优化能力,容易陷入局部最优,难以应对复杂的环境。
-
基于人工智能的避碰方法: 这种方法利用强化学习、深度学习等人工智能技术,训练无人艇在各种复杂环境中自主学习避碰策略。该方法具有较强的自适应性,但需要大量的训练数据,且难以保证避碰的安全性。
-
基于路径规划的避碰方法: 这种方法首先规划出一条全局最优的航行路径,然后利用局部避碰算法实时调整路径,以避开障碍物。常用的路径规划算法包括A算法、D算法、RRT算法等。该方法能够保证航行的全局最优性,但计算复杂度较高,难以满足实时性要求。
二、 基于MPC的无人艇避碰算法原理
模型预测控制(MPC)是一种基于模型的优化控制方法,其核心思想是在每个采样时刻,利用系统的动态模型预测未来一段时间内的系统状态,通过求解一个最优控制问题,得到最优的控制序列,并将该序列的第一个控制量作用于系统。MPC具有以下优点,使其非常适合用于无人艇避碰:
- 预测能力:
MPC能够利用系统的动态模型预测未来一段时间内的系统状态,从而提前预测潜在的碰撞风险。
- 优化控制:
MPC能够通过求解最优控制问题,综合考虑多种因素,如航行距离、避碰安全、能量消耗等,得到全局最优的避碰策略。
- 处理约束:
MPC能够显式地处理各种约束条件,如速度限制、转向角限制、避碰距离限制等,保证无人艇的安全可靠航行。
基于MPC的无人艇避碰算法主要包含以下几个步骤:
-
系统建模: 建立无人艇的运动学或动力学模型,描述无人艇的状态变量(如位置、速度、航向角)和控制输入(如推力、舵角)之间的关系。常用的模型包括三自由度模型、五自由度模型等。模型的精度直接影响预测的准确性,需要根据实际应用场景选择合适的模型。
-
环境感知: 通过传感器(如雷达、摄像头、激光雷达等)获取周围环境的信息,包括障碍物的位置、速度、尺寸等。障碍物的信息需要经过滤波、目标跟踪等处理,才能用于MPC的避碰决策。
-
成本函数设计: 设计成本函数,用于衡量控制策略的优劣。成本函数通常包括以下几个部分:
- 状态误差项:
用于惩罚无人艇的实际状态与期望状态之间的偏差,例如与目标点的距离误差、航向角误差等。
- 控制输入项:
用于惩罚控制输入的幅度,例如推力变化、舵角变化等,以减少能量消耗和提高控制平稳性。
- 避碰安全项:
用于惩罚无人艇与障碍物之间的距离,以保证避碰安全。通常采用安全距离阈值或势场函数来表示避碰约束。
- 状态误差项:
-
约束条件设定: 设定各种约束条件,包括:
- 系统动态约束:
基于系统模型的状态转移方程。
- 控制输入约束:
控制输入的范围限制,如推力范围、舵角范围等。
- 状态约束:
状态变量的范围限制,如速度限制、转向角限制等。
- 避碰安全约束:
保证无人艇与障碍物之间的距离大于安全距离阈值。
- 系统动态约束:
-
优化求解: 在每个采样时刻,根据当前系统状态和环境信息,求解一个带有约束条件的最优控制问题,得到最优的控制序列。常用的优化求解算法包括二次规划(QP)、非线性规划(NLP)等。
-
控制执行: 将最优控制序列的第一个控制量作用于无人艇,并重复上述步骤,实现无人艇的自主避碰航行。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇