【微电网】具有柔性结构的孤岛直流微电网的分级控制附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着分布式电源技术的蓬勃发展和电力系统向清洁化、低碳化转型,微电网作为一种有效的能量管理和控制单元,正受到广泛关注。特别是在偏远地区、海岛等缺乏大电网支撑的场景下,孤岛运行的微电网具有重要的应用价值。然而,传统交流微电网由于同步控制的复杂性、潮流控制的挑战以及潜在的谐波问题,在分布式直流电源接入方面存在固有限制。直流微电网因其更直接的分布式直流电源接入方式、更简单的控制结构以及更低的能量转换损耗,成为一种极具吸引力的替代方案。本文聚焦于具有柔性结构的孤岛直流微电网,深入探讨其分级控制策略。柔性结构是指微电网内部电源、负荷以及储能系统具有一定的可重构性和可控性,能够适应外部环境变化和内部运行需求。分级控制通过将复杂的控制任务分解为不同层次,有效提升系统的可靠性、稳定性和经济性。本文将从孤岛直流微电网的特点、柔性结构的内涵出发,详细论述分级控制在功率分配、电压稳定、储能管理以及故障处理等方面的应用,并对未来的研究方向进行展望。

关键词: 孤岛直流微电网;柔性结构;分级控制;功率分配;电压稳定;储能管理

引言

电力系统正经历着由传统集中式向分布式、智能化的深刻变革。分布式电源(DG),如光伏、风电等,因其清洁、可再生的特性,在全球范围内得到大规模应用。微电网作为一种将DG、储能系统(ESS)、负荷以及监控保护装置集成的能量管理单元,为DG的接入提供了有效平台。尤其在偏远地区或极端天气等情况下,孤岛运行的微电网能够提供可靠的电力供应,提高电网韧性。

传统的电力系统以交流为主,其控制技术成熟,但分布式直流电源的接入需要进行额外的逆变,增加了损耗和控制复杂度。近年来,直流微电网因其与许多DG和负荷天然兼容的直流特性,正逐渐成为研究热点。光伏、燃料电池、LED照明、电动汽车等都以直流形式运行,直接接入直流微电网能够避免不必要的交直流转换,提高系统效率。孤岛运行的直流微电网具有独特的控制挑战,包括缺乏大电网的电压支撑、功率平衡的实时性要求高、以及故障的快速检测和隔离等。

同时,为了提高孤岛直流微电网的适应性和鲁棒性,柔性结构的概念被引入。柔性结构体现在多个层面,例如:DG和负荷的动态可控性、储能系统的多模式运行能力、以及网络拓扑的可重构性等。通过赋予系统一定的柔性,微电网能够更好地应对DG输出的波动性、负荷需求的变化性以及外部环境的不确定性。

为了有效地管理和控制具有柔性结构的孤岛直流微电网,分级控制策略被广泛采用。分级控制将整个系统的控制任务划分为不同的层级,通常包括主级控制、次级控制和三级控制(或称能量管理系统)。这种分层结构能够将全局优化目标与局部快速响应相结合,简化控制设计,提高系统的可扩展性和可靠性。

本文旨在深入探讨具有柔性结构的孤岛直流微电网的分级控制策略。首先,我们将介绍孤岛直流微电网的典型结构和主要特点,并阐述柔性结构在提升系统性能方面的作用。接着,本文将重点阐述分级控制的各个层级及其功能,并分析各层级之间的相互作用。最后,我们将总结目前的研究进展,并对未来研究方向提出展望。

一、孤岛直流微电网的结构与特点

孤岛直流微电网通常由多种分布式电源、储能系统、直流负荷以及必要的功率变换器和控制系统组成。其典型结构如图1所示。

图1 典型孤岛直流微电网结构示意图

(此处应插入一个孤岛直流微电网的结构示意图,包括DG、ESS、Load、DC Bus、Converters等元件)

主要组成部分及其特点:

  • 分布式电源(DG):

     主要为光伏、风电、燃料电池等直流输出或经过整流后输出直流的电源。其输出具有波动性和间歇性,需要有效的控制策略来保证系统的功率平衡。

  • 储能系统(ESS):

     通常采用蓄电池、超级电容器等,用于平滑DG输出的波动,吸收多余能量,并在DG出力不足时提供功率支撑。ESS的充放电管理是孤岛直流微电网稳定运行的关键。

  • 直流负荷(Load):

     包括各种直流用电设备。

  • 功率变换器:

     如DC/DC变换器、DC/AC变换器(用于接入交流负荷)等,用于实现不同电压等级之间的能量转换和功率控制。

  • 直流母线(DC Bus):

     连接各单元的能量传输骨干。孤岛直流微电网的核心控制目标之一就是维持直流母线电压的稳定。

  • 控制系统:

     包括各单元的本地控制器以及微电网级的协调控制器。

孤岛直流微电网的主要特点:

  • 直流母线电压稳定性是关键:

     孤岛运行状态下,缺乏大电网的电压支撑,直流母线电压的稳定直接影响系统的正常运行。

  • 功率平衡的实时性要求高:

     DG出力和负荷需求随时间变化,需要实时调整各单元的功率输出和吸收,以维持功率平衡。

  • 能量管理与优化需求突出:

     需要对DG、ESS和负荷进行有效管理,最大化利用清洁能源,降低运行成本。

  • 故障检测与隔离的挑战:

     故障发生时,需要快速准确地检测故障位置并隔离故障单元,以防止故障扩散和系统崩溃。

  • 柔性结构提升系统适应性:

     通过赋予系统内部单元和结构一定的柔性,能够更好地应对不确定性,提高系统的鲁棒性。

二、柔性结构在孤岛直流微电网中的体现

柔性结构赋予孤岛直流微电网更强的适应性和鲁棒性,主要体现在以下几个方面:

  • 电源侧的柔性:

     可控型DG(如燃料电池)的出力可以根据系统需求进行调节。通过MPPT控制优化光伏/风电出力,但其固有的波动性仍然存在,需要通过其他手段进行补偿。

  • 负荷侧的柔性:

     可控负荷(如热水器、空调等)可以通过需求侧响应策略进行调度,参与系统功率平衡。

  • 储能系统的柔性:

     ESS具有灵活的充放电能力,可以快速响应系统功率缺额或盈余。多模式运行的ESS(如同时具备功率型和能量型储能)能够提供更全面的支撑。

  • 网络拓扑的柔性:

     通过开关或断路器,可以实现微电网内部连接关系的动态调整,例如将部分区域从主母线断开以形成子微电网,或者根据故障情况重构网络以隔离故障。

  • 控制策略的柔性:

     采用自适应、鲁棒或智能控制策略,使控制系统能够根据系统状态和外部环境变化调整控制参数或策略。

柔性结构的引入,使得孤岛直流微电网能够更有效地应对DG的波动性、负荷的不确定性以及潜在的故障,提高系统的可靠性和经济性。

三、孤岛直流微电网的分级控制策略

分级控制是将复杂的控制任务分解为不同层级,各层级负责不同的功能和时间尺度的控制。典型的分级控制结构包括:

  • 主级控制(Primary Control):

     通常为本地控制,响应速度最快,主要负责维持直流母线电压的稳定以及实现各单元之间的功率分配。常见的策略包括下垂控制(Droop Control)和虚拟阻抗控制。

  • 次级控制(Secondary Control):

     在主级控制的基础上,进行补偿和校正,消除稳态误差,实现更精确的电压恢复和电流共享。响应速度介于主级和三级之间。

  • 三级控制(Tertiary Control / Energy Management System - EMS):

     响应速度最慢,负责全局的能量管理和优化,包括DG出力计划、ESS充放电调度、负荷调度等,以实现经济性、环保性等目标。

3.1 主级控制

主级控制是分级控制的基础,直接作用于各单元的功率变换器,实现快速的局部控制。在孤岛直流微电网中,主级控制的主要目标是维持直流母线电压稳定和实现各单元之间的功率分配。

  • 下垂控制(Droop Control):

     是一种分布式控制策略,通过模拟虚拟电阻,使各并联单元的输出电压与输出电流(或功率)之间存在下垂特性。当总负荷增加时,直流母线电压下降,各单元根据其下垂系数自动增加出力,从而实现功率分配。然而,下垂控制存在稳态电压偏差和功率分配不均的问题,且下垂系数的选择影响系统的稳定性和功率分配精度。

  • 虚拟阻抗控制:

     在下垂控制的基础上引入虚拟阻抗,可以改善功率分配的精度,并抑制环流。通过调节虚拟阻抗的参数,可以调整各单元的功率分担比例。

  • 虚拟同步发电机控制(VSG):

     模拟传统同步发电机的惯性特性,为直流微电网提供虚拟惯性,增强系统稳定性,抑制电压波动。

主级控制的特点是响应速度快,无需通信,具有较高的可靠性,但存在稳态误差和功率分配精度受限的问题。

3.2 次级控制

次级控制旨在弥补主级控制的不足,消除稳态误差,改善功率分配精度,并实现直流母线电压的恢复。次级控制通常采用集中式或分布式控制策略,需要一定的通信能力。

  • 电压补偿控制:

     通过检测直流母线电压的偏差,生成补偿信号作用于主级控制的参考电压,将直流母线电压恢复到额定值。

  • 电流共享补偿控制:

     通过检测各单元的输出电流偏差,生成补偿信号作用于主级控制的下垂系数或虚拟阻抗,实现更精确的功率共享。

  • 基于通信的分布式次级控制:

     各单元之间通过有限的通信交换信息,协同完成电压恢复和功率共享的任务。这种方式提高了系统的可靠性,避免了单点故障。

次级控制的引入,使得孤岛直流微电网的运行性能显著提升,电压稳定性和功率分配精度得到保障。

3.3 三级控制(能量管理系统 - EMS)

三级控制是分级控制的最高层级,负责整个微电网的全局能量管理和优化运行。其主要目标包括:

  • DG出力优化:

     根据天气预报和负荷预测,制定DG的运行计划,最大化利用清洁能源。

  • 储能系统调度:

     根据DG出力、负荷需求、电价信号(如果适用)以及电池健康状态等信息,优化ESS的充放电策略,平滑波动,降低运行成本,延长电池寿命。

  • 负荷调度:

     通过需求侧响应策略,对可控负荷进行调度,参与系统功率平衡,减轻ESS的压力。

  • 电能交易:

     如果微电网能够与外部电网(即使是间歇性连接)进行互动,EMS还可以负责电能的买卖策略。

  • 故障管理:

     负责故障的检测、定位、隔离和恢复,协调各层级控制器的动作。

  • 运行模式管理:

     根据外部环境和内部状态,决定微电网是孤岛运行还是并网运行,以及内部网络的连接方式(如果具有拓扑柔性)。

三级控制通常采用优化算法,如线性规划、动态规划、模型预测控制等,来解决复杂的能量管理问题。其响应速度最慢,但能够实现微电网的长期优化运行。

⛳️ 运行结果

🔗 参考文献

[1] 杨小龙,程启明,褚思远,等.孤岛模式下光储直流微电网变功率控制策略[J].电力自动化设备, 2016, 36(11):9.DOI:10.16081/j.issn.1006-6047.2016.11.010.

[2] 郑丽君,王子鹏,吕世轩,等.基于荷电状态的直流微电网中多储能分级运行控制方法[J].电网技术, 2021.DOI:10.13335/j.1000-3673.pst.2020.0827.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值