✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
本论文针对传统电池荷电状态(SOC)估计方法在复杂工况下精度不足、适应性差等问题,提出一种融合 FOMIAUKF(分数阶优化改进自适应无迹卡尔曼滤波)、分数阶模块、模型估计与多新息系数的电池 SOC 估计方法。通过引入分数阶微积分理论构建分数阶电池模型,利用 FOMIAUKF 算法结合多新息系数对模型参数进行实时优化估计,实现对电池 SOC 的高精度、动态估计。仿真与实验结果表明,该方法相较于传统算法,在不同充放电工况下,SOC 估计精度显著提升,有效降低了估计误差,增强了算法的鲁棒性和适应性,为电池管理系统的优化提供了可靠的技术支撑。
一、引言
1.1 研究背景
在新能源汽车、储能系统等领域快速发展的当下,电池作为核心能量存储单元,其性能监测与管理至关重要。荷电状态(State of Charge,SOC)作为反映电池剩余电量的关键参数,精准的 SOC 估计是保障电池安全、高效运行,实现能量优化管理的基础。然而,电池内部化学反应复杂,其工作过程受温度、充放电电流、老化程度等多种因素影响,具有高度非线性和时变性,导致传统的 SOC 估计方法,如安时积分法、开路电压法等,难以满足复杂工况下高精度、实时性的要求 。因此,研究更先进、有效的电池 SOC 估计方法成为当前电池管理领域的重要课题。
1.2 国内外研究现状
国外在电池 SOC 估计研究方面起步较早,取得了诸多成果。早期研究中,扩展卡尔曼滤波(EKF)及其改进算法被广泛应用于电池 SOC 估计 ,通过对电池模型进行线性化处理,实现对 SOC 的动态估计,但由于线性化过程存在误差,在强非线性系统中估计精度受限。近年来,无迹卡尔曼滤波(UKF)凭借其无需线性化处理、能更好地保留非线性系统特性的优势,逐渐成为研究热点 。同时,一些智能算法,如神经网络、支持向量机等也被应用于 SOC 估计,通过对大量数据的学习实现高精度估计,但这些方法存在计算复杂度高、依赖大量样本数据等问题 。国内研究紧跟国际步伐,在改进传统算法和探索新方法上取得一定进展。部分学者通过结合多种算法优势,如将粒子群优化算法与卡尔曼滤波相结合,提升了 SOC 估计性能 ,但在应对电池参数时变和复杂工况方面仍有改进空间。
1.3 研究目的与意义
本研究旨在提出一种基于 FOMIAUKF、分数阶模块、模型估计与多新息系数的电池 SOC 估计方法,通过构建更符合电池特性的分数阶模型,结合先进的滤波算法和多新息系数优化策略,实现对电池 SOC 的高精度、动态、鲁棒估计。该研究成果有助于提升电池管理系统的性能,保障电池安全运行,延长电池使用寿命,对推动新能源产业发展具有重要的理论意义和实际应用价值。
二、相关理论基础
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇