DeepSeek实战指南:AI股票分析软件(三)—— 业务需求分析和爬虫管理模块搭建

距离《DeepSeek实战指南:AI股票分析软件》系列文章的上次更新已过去两个月。在此期间,我利用工作之余完成了基础框架的搭建。五一假期后,本系列将恢复定期更新节奏,所有技术实现细节将继续以完全免费的形式公开分享。上一篇地址:DeepSeek实战指南:AI股票分析软件(二)—— 股票数据API功能对比与选型策略_tushare收费标准-CSDN博客

一、 业务需求分析

当前技术路线聚焦于自主数据采集+AI分析的组合方案。通过对比其他AI股票分析(如扣子空间等),发现现有方案普遍存在两个问题:

  1. 过度依赖预置AI接口,数据控制力不足

  2. 动态页面处理能力有限,扩展性较差

1.1 借助DeepSeek需求分析

把上面的图片上传DeepSeek,基于DeepSeek的辅助分析,明确以下实现路径:

  1. 输入模块

    • 公司名称/网站:支持手动输入或链接导入。

    • 要求描述:通过NLP解析用户需求(如行业关键词、财务指标、风险偏好等)。

    • 关联分析:自动提取关键词(如“光伏”“新能源”),关联产业链及对应股票(如通威股份)。

  2. 数据处理与抓取

    • 多源数据整合

      • 企业数据:社保人数、中标项目(对接政府招标平台、天眼查/企查查API)。

      • 司法数据:裁判文书网、企业信用公示系统。

      • 舆情信息:新闻(新浪财经、雪球)、社交媒体(微博、Twitter)、论坛(股吧、Reddit)。

    • 实时更新:通过爬虫和API实现动态数据监控(如每日舆情热度)。

  3. 分析引擎

    • 产业链图谱:构建行业知识图谱,分析上下游关联企业。

    • 热度指数模型:基于舆情数据(情感分析+传播量)生成概念热度排名。

    • 风险评估:结合司法数据、财务指标(如负债率)提示潜在风险。

  4. 输出模块

    • 推荐列表

      • 热点概念:当前市场热点(如“AI芯片”“碳中和”)。

      • 关联股票:产业链相关标的及关联度评分。

      • 热度指数:实时舆情热度(0-100分)。

    • 可视化报告:图表展示企业社保趋势、中标项目分布、司法风险雷达图。

然后我们继续让DeepSeek深入分析:

1. 数据获取:多渠道整合公开信息

  • 企业基础数据(社保人数、司法记录、中标项目):

    • 工具:天眼查/企查查API(付费接口直接获取结构化数据)、政府公开招标平台爬虫(如使用requests抓取网页表格)。

  • 股票数据(股价、财务指标):

    • 工具:免费金融API(如Tushare、AKShare),直接调用接口获取实时或历史数据。

  • 舆情信息(新闻、社交媒体、论坛讨论):

    • 工具:爬虫(如BeautifulSoup抓取新闻标题) + 公开API(如新浪财经RSS、Twitter开发者接口)。

2. 数据处理与分析:简单AI模型驱动

  • 数据清洗

    • 去重(如删除重复新闻)、格式标准化(如统一日期格式)、异常值处理(如剔除极端股价波动)。

  • 关键分析模块

    • 情感分析:用预训练模型(如Hugging Face的transformers库)判断舆情正负面。

    • 热度计算:统计关键词(如“光伏”“AI芯片”)在新闻/社交媒体的出现频率,生成热度指数。

    • 风险识别:基于司法数据(如裁判文书数量)和财务指标(如资产负债率)标注风险等级。

  • 推荐逻辑

    • 简单规则:结合“舆情正面 + 近期股价上涨 + 低风险”筛选股票。

    • 进阶方案:用机器学习(如scikit-learn的随机森林)预测短期涨跌趋势。

3. 用户交互:轻量级界面设计

  • 输入功能

    • 文本框:用户输入公司名称或行业关键词(如“新能源”)。

    • 下拉菜单:选择分析维度(如“风险偏好”“短期/长期投资”)。

  • 输出展示

    • 推荐列表:表格形式展示股票名称、关联行业、热度指数、风险提示。

    • 可视化图表:用Python库(如matplotlibPlotly)生成趋势图(如舆情热度变化、股价走势)。

  • 工具选择

    • 本地应用:用Streamlit(Python库)快速搭建交互网页,无需前端知识。

    • 部署方式:本地运行或简单服务器托管(如PythonAnywhere)。

4. 实现流程总结

  1. 数据抓取 → 2. 清洗存储 → 3. 分析建模 → 4. 生成推荐 → 5. 界面展示

5. 注意事项

  • 合规性:仅使用公开数据,避免隐私问题;添加免责声明(如“不构成投资建议”)。

  • 轻量化:优先调用现成API和预训练模型,避免从零开发复杂算法。

  • 迭代优化:先从简单规则(如“热度+风险”)开始,后续逐步加入机器学习模型。

二、 数据采集模块

万丈高楼平地起,接下来主要实现数据采集这一步。

2.1 开源爬虫管理平台对比

通过DeepSeek推荐+实际验证,形成开源项目对比表:

框架核心优势适用场景环境管理方案
Crawlab分布式任务调度企业级复杂项目Docker容器化
GerapyScrapy深度集成Python爬虫项目虚拟环境隔离
TaskPyro轻量级任务编排中小型项目Conda环境切换
Crawlee浏览器自动化支持动态页面采集Playwright集成

2.2 开发进度

基础框架的话我找了一个开源的项目基于fastapi的ruoyi项目,爬虫使用crawl4ai,先看一下爬虫的主要架构以及项目、爬虫、任务、调度器、节点的关系。

 整个平台的实现流程如下:

爬虫管理系统采用的技术栈:

  • 后端框架:基于RuoYi改造的FastAPI服务

  • 核心组件:Crawl4ai网页解析器 + Celery任务队列

  • 数据存储:MongoDB文档数据库(分集合存储原始数据)

  • 文件存储:MinIO对象存储(PDF/图片等二进制文件)

下面展示一下完成的功能和页面,主要涉及:

  • 爬虫管理,如爬虫上传、在线编辑、在线调试
  • 爬虫任务管理,手动执行、停止、数据查看、日志查看

 三、接下来计划

  1. 支持API调用与爬虫任务混合调度

  2. 增加任务异步调度

  3. 数据分析验证:数据采集->财务指标提取 -> 行业对比分析 -> 可视化报告生成

 三、致谢

本项目基于以下开源技术构建:

  1. RuoYi-Vue3-FastAPI - 中台管理框架

  2. Crawlab - 分布式爬虫管理

  3. crawl4ai - 智能解析组件

  4. TaskPyro - 环境隔离方案

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包

    打赏作者

    Ai财富密码

    你的鼓励将是我创作的最大动力

    ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
    扫码支付:¥1
    获取中
    扫码支付

    您的余额不足,请更换扫码支付或充值

    打赏作者

    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值