【移动机器人路径规划】基于RRT、RRTconnect、RRTstar、PRM、FA算法移动机器人路径规划附Matlab代码

作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

移动机器人路径规划是机器人学领域的核心问题之一,旨在寻找从起始点到目标点的无碰撞最优路径。在复杂多变的未知或已知环境中,高效可靠的路径规划能力直接决定了移动机器人的自主性、安全性和实用性。随着机器人应用领域的不断拓展,对路径规划算法的需求也日益多样化,涌现出了众多优秀的算法,涵盖了基于采样的规划、基于图搜索的规划、基于人工势场的规划以及基于仿生智能的优化算法等多个类别。本文将对“【移动机器人路径规划】基于RRT、RRTconnect、RRTstar、PRM、dijkstra、Astar、APF、DWA、GA、ACO、PSO、BFO、ABC、CSA、FA算法移动机器人路径规划”这一主题进行深入探讨,对所列举的各种算法进行详细介绍、原理阐述、优劣分析以及应用场景的探讨,旨在为读者提供一个全面且深入的了解。

第一部分:基于采样的规划算法

基于采样的规划算法是处理高维空间路径规划问题的有效手段,其核心思想是通过随机采样构建构型空间中的连接图,并在图上进行搜索以找到路径。这类算法的优势在于无需对环境进行精细建模,对高维空间具有较好的适应性,但其完备性(即在存在解的情况下一定能找到解)通常是概率性的。

1. RRT (Rapidly-exploring Random Tree)

RRT算法是一种典型的基于增量采样的路径规划算法。其基本思想是从起始点出发,通过不断在构型空间中随机采样点,并尝试将这些采样点与已有的生长树连接,从而快速探索未知空间。RRT算法的生长过程具有向未探索区域快速扩张的特性,这使得它在高维空间中表现出色。

图片

  • 优点:

     易于实现,适用于高维空间,探索速度快。

  • 缺点:

     规划的路径通常不是最优的,对采样点的选择敏感,可能生成锯齿状路径。

2. RRT-Connect

RRT-Connect算法是对RRT算法的改进,通过同时从起始点和目标点生长两棵RRT树,并尝试连接这两棵树来加速规划过程。

图片

  • 优点:

     收敛速度比单向RRT更快,更适用于已知起始点和目标点的情况。

  • 缺点:

     规划的路径仍非最优。

3. RRT* (RRT-Star)

RRT*算法在RRT算法的基础上引入了重连接和路径优化机制,以提高路径的质量和最优性。

  • 原理:

     RRT*算法在生长过程中,不仅将新节点连接到最近的节点,还会检查新节点附近一定范围内的其他节点,并尝试将新节点连接到能获得更低路径成本的父节点。此外,当新的连接改善了现有树中的路径时,还会对树进行重连接操作。

  • 优点:

     渐近最优,即随着采样点数量的增加,规划的路径会趋近于最优路径。

  • 缺点:

     相较于RRT和RRT-Connect,计算复杂度更高,收敛速度较慢。

4. PRM (Probabilistic RoadMap)

PRM算法是另一种典型的基于采样的规划算法,其核心思想是在环境中随机采样生成大量的可行节点,并通过连接这些节点构建一个概率路图(Probability RoadMap)。

  • 原理:

     PRM算法分为两个阶段:构建阶段和查询阶段。

    • 构建阶段:

       在环境中随机采样生成大量的构型点,并判断其是否为可行(无碰撞)构型。对可行构型点进行连接,如果两个点之间的连线无碰撞,则在它们之间建立一条边。最终形成一个由可行构型点作为节点、可行连接作为边的概率路图。

    • 查询阶段:

       将起始点和目标点连接到概率路图中,然后利用图搜索算法(如Dijkstra或A*)在图上搜索从起始点到目标点的路径。

  • 优点:

     适用于多查询场景,一旦概率路图构建完成,后续的路径查询速度很快。

  • 缺点:

     构建阶段可能耗时较长,尤其在复杂环境中需要大量的采样点。完备性是概率性的。

第二部分:基于图搜索的规划算法

基于图搜索的规划算法将环境建模成图,并在图上利用搜索算法寻找最优路径。这类算法通常要求对环境有较为完整的建模信息,例如地图或障碍物分布。

1. Dijkstra算法

Dijkstra算法是一种经典的单源最短路径算法,用于在带权有向图或无向图中找到从起始节点到所有其他节点的最短路径。

  • 原理:

     算法维护一个距离数组,记录从起始点到每个节点的当前最短距离。初始时,起始点的距离为0,其他节点的距离为无穷大。算法不断从待访问节点中选择距离最小的节点,并更新其邻居节点的距离。重复此过程直到所有节点都被访问或目标节点被找到。

  • 优点:

     能够找到全局最优路径,适用于各种带权图。

  • 缺点:

     需要遍历所有可达节点,计算量较大,尤其在大型图中效率较低。

2. A*算法

A*算法是在Dijkstra算法基础上改进的启发式搜索算法,它结合了实际代价和启发式函数来引导搜索方向,从而提高了搜索效率。

图片

  • 优点:

     相较于Dijkstra算法,搜索效率更高,尤其在大型图中。如果启发式函数满足单调性或一致性,则可以保证找到最优路径。

  • 缺点:

     启发式函数的选择对算法性能影响很大,不合适的启发式函数可能导致找不到最优解或效率下降。

第三部分:基于人工势场的规划算法

基于人工势场的规划算法将机器人置于一个由目标点产生的引力场和由障碍物产生的斥力场中,机器人沿着势能下降的方向移动。

1. APF (Artificial Potential Field)

APF算法将目标点视为一个吸引力源,障碍物视为一个排斥力源。机器人受到引力和斥力的合力作用,并沿着合力方向移动。

  • 原理:

     定义一个目标势场函数,使得离目标点越近,势场值越低。定义一个障碍物势场函数,使得离障碍物越近,势场值越高。机器人在总势场中受到一个合力,合力方向指向势场下降最快的方向。机器人沿着合力方向移动,从而避开障碍物并趋向目标点。

  • 优点:

     算法简单直观,易于实现,适用于实时避障。

  • 缺点:

     容易陷入局部最优解,无法穿越U型障碍物,对动态环境适应性较差。

第四部分:基于动态窗口法的规划算法

动态窗口法(DWA)是一种基于速度空间的实时局部路径规划算法,它考虑了机器人的动力学约束和传感器信息。

1. DWA (Dynamic Window Approach)

DWA算法在每个采样周期内,根据机器人的当前状态和动力学约束,预测机器人在短时间内可能达到的速度范围(动态窗口)。然后在动态窗口内采样多个速度向量,并对每个速度向量进行评估,选择最优的速度向量作为机器人的控制输入。

  • 原理:

     算法在一个预定的时间内步长内,根据机器人的当前线速度和角速度以及其最大加速度和最大角加速度,计算出机器人可能达到的速度范围,即动态窗口。然后在动态窗口内,对多个采样速度向量进行评估,评估标准通常包括:与目标点的接近程度、与障碍物的距离、机器人的姿态等。选择综合评估得分最高的速度向量作为机器人的控制指令。

  • 优点:

     考虑了机器人的动力学约束,适用于实时避障,对动态环境具有一定的适应性。

  • 缺点:

     是局部规划算法,无法保证找到全局最优路径,容易陷入局部最优。

第五部分:基于仿生智能的优化算法

基于仿生智能的优化算法借鉴了自然界生物的群体行为或进化机制,通过迭代优化过程来搜索最优解。这些算法通常适用于解决非线性、多目标或约束复杂的优化问题,可以将路径规划问题转化为一个优化问题来求解。

1. GA (Genetic Algorithm)

遗传算法是一种模拟自然选择和遗传机制的全局优化算法。

  • 原理:

     GA将路径表示为一个“染色体”,通过交叉、变异等操作产生新的“染色体”,并根据适应度函数(例如路径长度、碰撞次数等)评估每个“染色体”的优劣。通过不断迭代选择适应度高的“染色体”进行繁殖,最终收敛到较优的解。

  • 优点:

     适用于解决复杂的优化问题,具有全局搜索能力。

  • 缺点:

     收敛速度较慢,参数选择对算法性能影响较大,不保证找到全局最优解。

2. ACO (Ant Colony Optimization)

蚁群优化算法是一种模拟蚂蚁觅食行为的仿生优化算法。

  • 原理:

     ACO模拟蚂蚁在路径上释放信息素的行为。信息素浓度高的路径被选择的概率更大。通过信息素的累积和挥发,算法最终趋向于选择最优路径。在路径规划中,将可行路径视为蚂蚁行进的路径,根据路径长度和安全性等因素来更新信息素。

  • 优点:

     具有分布式计算和并行搜索的特点,适用于求解离散优化问题。

  • 缺点:

     收敛速度较慢,容易陷入局部最优。

3. PSO (Particle Swarm Optimization)

粒子群优化算法是一种模拟鸟群或鱼群集体觅食行为的仿生优化算法。

  • 原理:

     PSO算法将路径表示为一个“粒子”,每个粒子在搜索空间中以一定的速度飞行,并根据个体最优位置和全局最优位置来调整自己的速度和位置。通过粒子的协同搜索,算法最终趋向于找到最优解。

  • 优点:

     算法简单易实现,收敛速度较快。

  • 缺点:

     容易陷入局部最优,不适用于处理离散优化问题。

4. BFO (Bacterial Foraging Optimization)

细菌觅食优化算法是一种模拟细菌觅食行为的仿生优化算法。

  • 原理:

     BFO模拟细菌在环境中的趋化、繁殖、聚集和迁徙等行为。细菌根据环境中的营养浓度和毒素浓度来调整其移动方向和繁殖策略,最终找到最优的觅食区域。在路径规划中,将环境中的目标点和障碍物分别对应营养和毒素,细菌的移动路径对应机器人的路径。

  • 优点:

     具有较强的全局搜索能力,对初始参数不敏感。

  • 缺点:

     算法相对复杂,参数较多。

5. ABC (Artificial Bee Colony)

人工蜂群算法是一种模拟蜜蜂采蜜行为的仿生优化算法。

  • 原理:

     ABC模拟蜂群中的采蜜蜂、观察蜂和侦察蜂三种蜜蜂的行为。采蜜蜂在当前已知蜜源附近搜索新的蜜源,观察蜂根据采蜜蜂的信息选择新的蜜源,侦察蜂负责搜索新的未知蜜源。通过蜂群的协作搜索,算法最终找到最优的蜜源。在路径规划中,将可行路径视为蜜源,蜜源的质量对应路径的优劣。

  • 优点:

     具有较强的全局搜索能力,鲁棒性较好。

  • 缺点:

     收敛速度可能较慢。

6. CSA (Cuckoo Search Algorithm)

布谷鸟搜索算法是一种模拟布谷鸟寄生性育雏行为的仿生优化算法。

  • 原理:

     CSA模拟布谷鸟将蛋产在宿主鸟巢中的行为。算法将路径表示为一个“巢穴”,最优解对应最优的“巢穴”。通过随机生成新的“蛋”(代表新的路径),并与宿主鸟巢中的“蛋”进行比较,如果新“蛋”更优,则替换宿主鸟巢中的“蛋”。此外,算法还模拟宿主鸟发现外来“蛋”并将其丢弃的行为,这有助于避免算法陷入局部最优。

  • 优点:

     具有较强的全局搜索能力,参数较少。

  • 缺点:

     对 Levy flights 参数的选择敏感。

7. FA (Firefly Algorithm)

萤火虫算法是一种模拟萤火虫发光行为的仿生优化算法。

  • 原理:

     FA模拟萤火虫之间通过发光来吸引对方的行为。亮度高的萤火虫吸引亮度低的萤火虫。算法将路径表示为一个“萤火虫”,路径的优劣对应萤火虫的亮度。亮度低的萤火虫向亮度高的萤火虫移动,通过萤火虫之间的相互吸引和随机移动,算法最终趋向于最优解。

  • 优点:

     算法简单易实现,具有较强的全局搜索能力。

  • 缺点:

     参数选择对算法性能有一定影响,可能陷入局部最优。

第六部分:未来发展方向与挑战

尽管移动机器人路径规划领域取得了显著进展,但仍然面临着一些挑战和未来发展方向:

  • 动态和未知环境下的路径规划:

     现有算法在动态和未知环境下的实时性和鲁棒性仍需提高。如何利用传感器信息进行实时的环境感知和障碍物预测,并快速调整规划策略是重要的研究方向。

  • 多机器人协同路径规划:

     随着多机器人系统的应用日益广泛,如何实现多机器人的协同路径规划,避免碰撞和死锁,提高整体效率是亟待解决的问题。

  • 考虑机器人动力学和运动学约束的路径规划:

     更精确地考虑机器人的动力学和运动学约束,规划出符合机器人运动能力的平滑、可执行路径是实际应用中的关键。

  • 路径规划与任务规划的结合:

     将路径规划与高级任务规划相结合,使机器人能够根据任务需求智能地选择路径和行为,提高机器人的自主性和智能化水平。

  • 基于学习的路径规划:

     机器学习,特别是深度学习,在路径规划领域展现出巨大的潜力。如何利用数据驱动的方法学习复杂的环境特征和规划策略,实现端到端的路径规划是未来的发展趋势。

  • 安全性与可解释性:

     在人机共存的环境中,确保机器人路径规划的安全性至关重要。同时,提高规划结果的可解释性,使操作者能够理解机器人的决策过程,增强人机信任度。

结论

移动机器人路径规划是机器人学领域一个充满挑战和机遇的研究方向。本文对基于RRT、RRTconnect、RRTstar、PRM、dijkstra、Astar、APF、DWA、GA、ACO、PSO、BFO、ABC、CSA、FA等多种算法进行了详细的介绍和分析。每种算法都有其独特的优势和局限性,适用于不同的应用场景。未来的研究将致力于提高算法在动态和未知环境下的实时性和鲁棒性,探索多机器人协同规划和基于学习的规划方法,并更加深入地考虑机器人的动力学约束和安全性问题。随着技术的不断发展,相信移动机器人将能够在更加复杂和多样化的环境中实现更加自主、高效和安全的导航。

⛳️ 运行结果

图片

图片

图片

图片

图片

图片

🔗 参考文献

[1] 秦浩然,刘明,姜义雯,等.基于改进RRT-Connect算法的仓储AGV路径规划研究[J].微型电脑应用, 2024, 40(5):124-128.

[2] 邹奋扬.两轮差速移动机器人的路径规划与轨迹跟踪控制研究[D].中南大学,2022.

[3] 李磊,吴翔,包祥威,等.基于改进RRT-Connect算法的机械臂抓取路径规划[J].机器人技术与应用, 2021.DOI:10.3969/j.issn.1004-6437.2021.02.007.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值