【WSN节点定位】基于人工蜂群算法ABC优化无线传感器非测距定位ABC-DVHop附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

一、引言

无线传感器网络(Wireless Sensor Networks,WSN)凭借其自组织、低成本、可快速部署等特性,在环境监测、智能交通、工业自动化、军事侦察等众多领域得到广泛应用。在 WSN 的实际运行中,节点的准确位置信息是数据采集、路由决策、目标跟踪等功能实现的基础。例如,在森林火灾监测中,只有知道传感器节点的准确位置,才能精准定位火灾发生区域;在智能农业中,节点位置信息有助于实现对农作物生长环境数据的精准采集与分析。然而,传统的基于测距的定位技术,如 GPS、TOA(Time of Arrival)、TDOA(Time Difference of Arrival)等,虽然定位精度高,但存在设备成本高、功耗大、对硬件要求苛刻等问题,在一些资源受限的 WSN 场景中难以推广。相比之下,非测距定位技术不需要专门的测距设备,通过节点间的连通性、跳数等信息实现定位,具有成本低、功耗小、易于实现等优势,成为 WSN 定位研究的热点方向。DVHop(Distance Vector - Hop)算法作为经典的非测距定位算法,因其原理简单、易于实现而被广泛应用,但该算法存在定位误差较大的问题。人工蜂群算法(Artificial Bee Colony Algorithm,ABC)是一种模拟蜜蜂觅食行为的智能优化算法,具有全局搜索能力强、鲁棒性好等特点。将 ABC 算法应用于 DVHop 算法的优化,提出 ABC - DVHop 算法,有望有效提高无线传感器网络非测距定位的精度,对推动 WSN 在更多领域的深入应用具有重要意义。

二、无线传感器网络节点定位技术概述

2.1 定位技术分类

无线传感器网络节点定位技术主要分为基于测距的定位技术和非测距定位技术两大类。基于测距的定位技术通过测量节点间的距离或角度信息,利用三边定位、三角定位等几何方法计算未知节点的位置。常见的基于测距的定位技术包括 GPS 定位,它利用卫星信号实现全球范围内的高精度定位,但在室内或信号遮挡环境下定位效果不佳;TOA 技术通过测量信号从发送节点到接收节点的传播时间来计算距离;TDOA 技术则通过测量信号到达不同接收节点的时间差来确定距离。非测距定位技术不依赖精确的距离或角度测量,而是根据节点间的连通性、跳数、信号强度等信息估算节点位置。例如质心算法,根据未知节点通信范围内的锚节点构成的多边形质心作为未知节点的估计位置;APIT 算法通过判断未知节点是否位于多个锚节点构成的三角形内来确定位置;DVHop 算法则通过计算未知节点到锚节点的最小跳数和平均每跳距离来估算位置。

2.2 DVHop 算法原理

DVHop 算法的定位过程主要分为三个阶段。第一阶段是跳数初始化,锚节点将自身跳数设为 0,并向邻居节点广播包含自身 ID、位置坐标和跳数信息的分组。邻居节点接收到分组后,将跳数加 1,并继续向其邻居节点转发,直至网络中的所有节点都获取到与锚节点的最小跳数。第二阶段是平均每跳距离计算,每个锚节点收集网络中其他锚节点的位置信息和与之的最小跳数,根据公式

为与该锚节点通信的其他锚节点数量)计算出平均每跳距离,并将该信息广播至网络中。第三阶段是未知节点位置计算,未知节点接收到至少三个锚节点的平均每跳距离和位置信息后,根据最小跳数与平均每跳距离估算出与锚节点的距离,再利用三边定位或极大似然估计等方法计算自身位置。然而,DVHop 算法存在明显缺陷,例如网络中节点分布不均匀会导致平均每跳距离计算不准确,节点的不规则分布也会使跳数与实际距离的关系失真,从而影响定位精度。

三、人工蜂群算法(ABC)原理

3.1 蜜蜂觅食行为模拟

人工蜂群算法模拟了蜜蜂的觅食行为。在自然界中,蜜蜂群体通过协作寻找蜜源,主要有三种类型的蜜蜂:引领蜂、跟随蜂和侦查蜂。引领蜂负责开采已发现的蜜源,并记录蜜源的位置和质量信息;跟随蜂在蜂巢中等待,根据引领蜂分享的蜜源信息,选择前往蜜源开采;侦查蜂则负责在蜂巢周围随机搜索新的蜜源。当某个蜜源的质量不再满足要求时,引领蜂会转变为侦查蜂,重新寻找新的蜜源。

四、基于 ABC 算法优化的 DVHop 算法(ABC-DVHop)

4.1 ABC-DVHop 算法设计思路

ABC - DVHop 算法的核心思路是利用 ABC 算法优化 DVHop 算法中平均每跳距离的计算,从而提高定位精度。在传统 DVHop 算法中,平均每跳距离的计算受节点分布影响较大,导致定位误差。ABC - DVHop 算法将平均每跳距离的计算看作一个优化问题,将不同的平均每跳距离计算方案视为蜜源,通过 ABC 算法搜索最优的平均每跳距离计算方案,使得基于该方案计算出的未知节点与锚节点的距离更接近实际距离,进而提高定位精度。

4.2 ABC-DVHop 算法实现步骤

  1. 初始化:在 WSN 中确定锚节点和未知节点,初始化 ABC 算法的参数,包括蜜源数量(即解的数量)、最大迭代次数、引领蜂和跟随蜂数量等。同时,按照 DVHop 算法的第一阶段,完成网络中所有节点与锚节点的最小跳数计算。
  1. 平均每跳距离优化:将每个蜜源对应一组平均每跳距离计算参数,利用这些参数计算网络中所有锚节点的平均每跳距离。对于每个蜜源(即一组平均每跳距离计算参数),根据计算出的平均每跳距离,按照 DVHop 算法的第三阶段,计算未知节点的位置估计。以未知节点位置估计与实际位置的误差作为适应度函数,评估每个蜜源的质量。例如,适应度函数可以定义为

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值