使用 PMU(相量测量单元)进行电力系统状态估计【IEEE-14、IEEE30节点】附Matlab代码

作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

电力系统状态估计(Power System State Estimation,简称 PSSE)是现代电力系统运行和控制中的关键技术,其目的是利用实时量测数据推算出电力系统的当前运行状态,即各节点的电压幅值和相角。传统的 PSSE 主要依赖 SCADA(监控与数据采集)系统采集的遥测数据,如功率潮流和电压幅值。然而,SCADA 数据存在同步性差、精度有限等缺点,尤其在面对复杂的、动态变化的电力系统时,其状态估计结果的可靠性可能会受到影响。近年来,随着相量测量单元(Phasor Measurement Unit,简称 PMU)技术的快速发展和广泛应用,为电力系统状态估计带来了革命性的改进。PMU 能够提供高精度的、同步的相量量测数据,包括电压相量和电流相量,极大地提升了状态估计的准确性和鲁棒性。本文将深入探讨使用 PMU 进行电力系统状态估计的理论基础和方法,并以 IEEE-14 节点和 IEEE-30 节点系统为例,阐述 PMU 数据在提高状态估计性能方面的优势和效果。

关键词: 电力系统状态估计;相量测量单元 (PMU);SCADA;IEEE-14 节点;IEEE-30 节点;加权最小二乘法;全状态估计

1. 引言

电力系统是一个庞大而复杂的非线性动态系统,实时准确地获取其运行状态对于保证电力系统的安全、稳定和经济运行至关重要。状态估计作为电力系统运行和控制的基石,为故障诊断、潮流计算、最优潮流、安全评估等高级应用提供了可靠的数据基础。传统的状态估计算法主要基于 SCADA 系统采集的量测数据,通常采用加权最小二乘法(Weighted Least Squares,简称 WLS)来求解。SCADA 数据主要包括节点电压幅值、支路功率潮流(有功和无功)、注入功率等。然而,由于 SCADA 系统是基于异步扫描的方式采集数据,不同测点之间的数据存在时间不同步性,且采集速率相对较低,这在系统发生快速变化或出现故障时,会导致状态估计结果的偏差甚至错误。

PMU 是一种先进的电力系统测量装置,它利用全球定位系统(GPS)提供的精确时钟同步信号,对电力系统中的电压和电流相量进行高精度、同步的测量。PMU 能够以较高的采样率(通常为每秒几十次甚至几百次)提供包括电压幅值、相角以及电流幅值、相角在内的实时数据。PMU 数据的同步性、高精度和高采样率特性,为电力系统状态估计提供了前所未有的机会,能够显著提高状态估计的准确性、可靠性和实时性。

本文将首先回顾传统 SCADA-based 状态估计的基本原理,然后详细介绍基于 PMU 的状态估计方法,并分析 PMU 数据在状态估计中的优势。最后,以标准的 IEEE-14 节点和 IEEE-30 节点测试系统为例,通过理论分析和仿真模拟(虽然本文不包含具体仿真结果,但将阐述其理论基础),说明 PMU 数据对状态估计性能提升的潜力。

2. 传统 SCADA-based 电力系统状态估计

传统 SCADA-based 电力系统状态估计通常采用加权最小二乘法(WLS)。其基本思想是,假设量测数据与系统状态变量之间存在非线性关系,通过最小化量测量测值与根据状态变量计算出的量测值之间的残差的加权平方和,来求解最优的状态变量。

电力系统的状态变量通常选择为各节点的电压幅值和相角(通常以某一参考节点的相角为零)。假设系统共有 N 个节点,则状态变量向量 x 可以表示为:

x = [V₁ V₂ ... V_N θ₁ θ₂ ... θ_N]ᵀ

其中,V_i 为第 i 个节点的电压幅值,θ_i 为第 i 个节点的电压相角。通常,为了避免奇异性,可以将参考节点的相角设定为零,从而状态变量的维数减少为 2N-1。

量测数据向量 z 包含 SCADA 系统采集的各种量测值,如节点电压幅值、支路有功功率、无功功率、节点注入有功功率、节点注入无功功率等。量测值与状态变量之间的关系可以通过电力系统潮流方程来描述:

z = h(x) + e

其中,h(x) 是一个非线性函数向量,表示根据状态变量 x 计算出的理论量测值;e 是量测量测误差向量,通常假设其服从零均值的高斯分布。

WLS 方法的目标是找到最优的状态变量 x,使得量测残差的加权平方和最小化:

min ||z - h(x)||²_R⁻¹ = min (z - h(x))ᵀ R⁻¹ (z - h(x))

其中,R 是量测量测误差的协方差矩阵,通常假设各量测误差之间相互独立,则 R 为对角矩阵,对角线元素为各量测误差方差的倒数,即 R⁻¹ 的对角线元素为各量测误差方差的倒数。这反映了不同量测值的精度不同,高精度的量测值具有更大的权重。

由于 h(x) 是非线性函数,WLS 问题通常采用迭代的方法求解,例如牛顿-拉夫逊法。在每次迭代中,对 h(x) 进行线性化,得到:

h(x) ≈ h(xᵏ**)** + H(xᵏ**)** Δx

其中,xᵏ 是第 k 次迭代的状态变量,H(xᵏ**)** 是在 xᵏ 点处的雅可比矩阵,其元素为量测值对状态变量的偏导数,Δxᵏ 是状态变量的修正量。将线性化结果代入目标函数并求导,可以得到修正量 Δxᵏ 的迭代公式:

Δxᵏ = (Hᵀ R⁻¹ H)⁻¹ Hᵀ R⁻¹ (z - h(xᵏ**)**)

迭代过程从一个初始估计值 x⁰ 开始,不断更新状态变量 xᵏ⁺¹ = xᵏ + Δxᵏ,直到 Δxᵏ 足够小或达到最大迭代次数。

SCADA-based 状态估计的优点是技术成熟,实现相对容易,且对量测数据的要求相对较低(只需要传统的电压幅值和功率量测)。然而,其主要缺点是:

  • 同步性差:

     SCADA 数据是非同步的,不同测点的数据采集时刻不同,这使得在动态变化系统中进行状态估计时,量测数据不能准确反映同一时刻的系统状态。

  • 精度有限:

     SCADA 传感器的精度相对较低,量测量测误差较大。

  • 信息不完整:

     SCADA 数据通常不包含电压相角信息,这使得状态估计依赖于节点电压幅值和功率潮流之间的非线性关系,增加了求解的难度和对初始值的依赖性。

  • 对坏数据敏感:

     异步性和低精度使得 SCADA-based 状态估计容易受到坏数据的影响,需要额外进行坏数据检测和处理。

3. 基于 PMU 的电力系统状态估计

PMU 技术的出现为电力系统状态估计带来了质的飞跃。PMU 能够提供高精度的、同步的电压和电流相量数据,这些数据直接反映了系统的运行状态,为状态估计提供了更加直接和可靠的信息。

3.1 PMU 量测数据

PMU 通常安装在电力系统中的重要节点和支路上,能够测量以下相量信息:

  • 节点电压相量:

     包括电压幅值和相角。

  • 支路电流相量:

     包括电流幅值和相角。

PMU 数据是同步的,这意味着所有 PMU 在同一时刻采集的数据都具有相同的 GPS 时间戳,这极大地提高了量测数据的有效性和一致性。

3.2 基于 PMU 的状态估计算法

基于 PMU 的状态估计方法可以分为以下几类:

  • 全 PMU 测量状态估计:

     如果系统中部署了足够的 PMU,使得所有节点都能被PMU直接测量或通过基尔霍夫定律间接确定其状态,则可以直接利用 PMU 的电压相量和电流相量数据进行全状态估计。在这种情况下,状态变量可以直接由 PMU 测量的电压相量确定,无需迭代计算。

  • 混合 PMU/SCADA 测量状态估计:

     在大多数实际系统中,由于成本和安装限制,不可能在所有节点都安装 PMU。因此,更常见的情况是混合使用 PMU 和 SCADA 测量数据进行状态估计。这种方法结合了 PMU 数据的高精度和同步性以及 SCADA 数据的覆盖范围广的优点。

  • 基于 PMU 的线性状态估计:

     利用 PMU 直接测量的电压相量,可以将状态估计问题转化为线性问题。例如,如果知道所有节点的电压相量,则可以通过线路参数计算出支路电流相量,然后根据基尔霍夫电流定律进行验证或通过支路功率进行计算。

本文重点探讨混合 PMU/SCADA 测量状态估计,因为它更符合实际情况。在这种情况下,量测数据向量 z 包含 PMU 测量的电压相量和电流相量,以及 SCADA 测量的电压幅值、功率潮流等。

PMU 测量的电压相量可以直接作为状态变量的一部分或提供关于状态变量的直接信息。例如,如果节点 i 安装了 PMU,则其电压相量 V_i∠θ_i 直接作为量测值。电流相量可以通过节点的电压相量和支路参数来表示,例如连接节点 i 和节点 j 的支路电流 I_ij∠φ_ij 可以表示为与 V_i∠θ_i 和 V_j∠θ_j 相关的函数。

基于 PMU 的混合状态估计仍然可以采用加权最小二乘法。量测函数 h(x) 中将包含 PMU 量测与状态变量(通常仍为节点电压幅值和相角)之间的关系。例如,如果节点 i 有 PMU 测量,则量测函数中会包含量测值 V_i^m 和 θ_i^m,它们与状态变量 V_i 和 θ_i 直接相关:

V_i^m = V_i + e_V
θ_i^m = θ_i + e_θ

其中,e_V 和 e_θ 是相应的量测量测误差。由于 PMU 测量精度高,这些误差的方差通常远小于 SCADA 测量误差的方差,因此在加权矩阵 R⁻¹ 中,PMU 量测对应的权重会更大。

PMU 测量电流相量也可以纳入量测方程。例如,连接节点 i 和节点 j 的支路电流 I_ij^m∠φ_ij^m 可以表示为与 V_i∠θ_i、V_j∠θ_j 和支路参数相关的非线性函数。

基于 PMU 的状态估计的主要优点在于:

  • 高精度:

     PMU 测量精度远高于 SCADA 测量,提高了状态估计结果的准确性。

  • 同步性:

     PMU 数据的同步性消除了异步性带来的误差,特别是在动态系统和故障情况下。

  • 提供相角信息:

     PMU 直接提供电压相角信息,这在 SCADA 系统中通常是缺失的,极大地增强了状态估计的可观测性,并有助于线性化。

  • 提高可观测性:

     PMU 的部署可以显著提高电力系统的可观测性,减少对冗余量测的需求,即使在量测点较少的情况下也能进行有效的状态估计。

  • 增强鲁棒性:

     PMU 的高精度和同步性使得状态估计对坏数据的敏感度降低。

4. IEEE-14 节点和 IEEE-30 节点系统案例分析(理论阐述)

IEEE-14 节点和 IEEE-30 节点系统是电力系统分析中常用的标准测试系统,它们具有不同的规模和拓扑结构,可以用来验证各种算法和方法。

4.1 IEEE-14 节点系统

IEEE-14 节点系统是一个相对简单的系统,包含 14 个节点和 20 条支路,通常用于教学和初步算法验证。

  • SCADA-based 状态估计:

     在没有 PMU 的情况下,IEEE-14 节点系统的状态估计需要依赖传统的 SCADA 量测,如节点电压幅值、支路功率潮流、注入功率等。要实现可观测性,需要在系统中部署足够的 SCADA 测点。由于系统规模较小,传统的 WLS 方法在理想情况下可以取得较好的结果。但是,如果量测数据存在异步性和误差,尤其是在关键支路或节点量测缺失的情况下,状态估计的准确性和可靠性会受到影响。

  • 基于 PMU 的状态估计:

     在 IEEE-14 节点系统中引入 PMU,可以在不同程度上提高状态估计的性能。如果在关键节点(例如发电厂节点或重要的负荷节点)安装 PMU,可以直接获得高精度的电压相量信息,从而显著改善状态估计的精度。即使只部署少量 PMU,也可以利用其同步性和高精度特性,与现有的 SCADA 数据相结合,提高整体状态估计的鲁棒性。例如,在一个节点安装 PMU,可以直接确定该节点的电压幅值和相角,这将有助于确定与其相连的其他节点的电压相量。在 IEEE-14 节点系统中,合理选择 PMU 的安装位置对于最大化其对状态估计的贡献至关重要。研究表明,即使少量 PMU 的部署,也能显著提高系统的可观测性,甚至在某些情况下,通过合理的 PMU 部署方案,可以实现全状态的可观测性,从而避免迭代求解非线性方程。

4.2 IEEE-30 节点系统

IEEE-30 节点系统是一个规模更大的系统,包含 30 个节点和 41 条支路,具有更复杂的拓扑结构和更多的量测变量,更能反映实际电力系统的特性。

  • SCADA-based 状态估计:

     在 IEEE-30 节点系统中,传统 SCADA-based 状态估计面临更大的挑战。系统规模的增加意味着更多的状态变量和更复杂的潮流关系,对量测数据的覆盖范围和质量要求更高。异步性和低精度量测在大型系统中更容易导致状态估计的误差累积和坏数据问题。为了保证可观测性,需要在系统中部署大量的 SCADA 测点,这增加了系统的复杂性和成本。

  • 基于 PMU 的状态估计:

     在 IEEE-30 节点系统中引入 PMU,对于提高状态估计的性能具有更加重要的意义。由于系统规模较大,传统的 SCADA 量测很难保证全面的覆盖和同步性。PMU 的高精度和同步性可以在很大程度上弥补这些不足。在 IEEE-30 节点系统中,合理的 PMU 部署策略显得尤为重要。通过优化 PMU 的安装位置,可以用最少的 PMU 实现最大的可观测性增益。例如,选择关键的母线节点、重要的联络线支路等安装 PMU,可以直接获得高精度的电压相量和电流相量,从而为整个系统的状态估计提供可靠的基准。在混合 PMU/SCADA 状态估计中,PMU 量测数据的高权重可以有效地抑制 SCADA 量测误差的影响,提高状态估计的准确性和鲁棒性。对于 IEEE-30 节点这样的大型系统,利用 PMU 的同步性可以更有效地处理系统中的动态变化和故障情况,提供更加实时的状态信息。

4.3 PMU 对状态估计性能的影响

在 IEEE-14 和 IEEE-30 节点系统中,PMU 的引入对状态估计性能的影响主要体现在以下几个方面:

  • 提高精度:

     PMU 量测的高精度能够显著降低状态估计结果的误差。在混合状态估计中,PMU 量测的高权重使得它们在决定状态变量值方面发挥主导作用。

  • 增强鲁棒性:

     PMU 量测的同步性和高精度降低了状态估计对坏数据的敏感性,提高了系统的鲁棒性。即使部分 SCADA 量测存在误差或缺失,PMU 数据仍能提供可靠的状态信息。

  • 改善可观测性:

     PMU 直接提供电压相角信息,这对于提高系统的可观测性至关重要。合理的 PMU 部署可以使得即使在量测冗余度不高的情况下,也能实现可靠的状态估计。

  • 支持实时应用:

     PMU 的高采样率和同步性使得状态估计能够更加实时地反映系统的动态变化,为实时潮流计算、安全评估、故障定位等高级应用提供支持。

  • 简化算法:

     在理想情况下,如果 PMU 能够提供足够的信息,甚至可以将非线性的状态估计问题转化为线性问题,简化求解过程。

5. 结论

电力系统状态估计是现代电力系统安全、稳定运行的关键技术。传统的基于 SCADA 的状态估计方法由于量测数据的同步性差、精度有限等缺点,在应对复杂的电力系统运行时面临挑战。相量测量单元(PMU)技术的快速发展为电力系统状态估计带来了革命性的进步。PMU 能够提供高精度、同步的电压和电流相量数据,极大地提高了状态估计的准确性、鲁棒性和实时性。

通过对基于 PMU 的状态估计算法的深入分析,并结合 IEEE-14 节点和 IEEE-30 节点系统的理论案例,可以看出,PMU 的引入可以显著提升状态估计的性能。PMU 的高精度和同步性有效解决了传统 SCADA 数据的缺点,提供了更加可靠的状态信息。在实际应用中,合理规划 PMU 的安装位置,结合现有的 SCADA 系统,采用混合 PMU/SCADA 状态估计方法,是提高电力系统状态估计水平的有效途径。随着 PMU 在电力系统中的广泛部署,基于 PMU 的状态估计将在未来的智能电网中发挥越来越重要的作用,为电力系统的可靠、高效运行提供强有力的支撑。

⛳️ 运行结果

图片

图片

图片

图片

图片

🔗 参考文献

[1] 刘辉乐,刘天琪,彭锦新.基于PMU的分布式电力系统动态状态估计新算法[J].电力系统自动化, 2005, 29(4):6.DOI:10.3321/j.issn:1000-1026.2005.04.007.

[2] 游家训,黄斌,郭创新,等.混合量测用于电力系统状态估计[J].高电压技术, 2009(7):5.DOI:CNKI:SUN:GDYJ.0.2009-07-046.

[3] 贾宏杰,吕英辉,曾沅,等.PMU在电力系统中的优化配置方法[J].电力科学与技术学报, 2010, 25(1):7.DOI:10.3969/j.issn.1673-9140.2010.01.010.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值